Advertisement

Ecotoxicology

, Volume 25, Issue 2, pp 267–278 | Cite as

Toxicokinetics of Ag in the terrestrial isopod Porcellionides pruinosus exposed to Ag NPs and AgNO3 via soil and food

  • Paula S. Tourinho
  • Cornelis A. M. van Gestel
  • A. John Morgan
  • Peter Kille
  • Claus Svendsen
  • Kerstin Jurkschat
  • J. Fred W. Mosselmans
  • Amadeu M. V. M. Soares
  • Susana Loureiro
Article

Abstract

Silver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus. Isopods were exposed to contaminated Lufa 2.2 soil or alder leaves as food. Uptake and elimination rate constants for soil exposure did not significantly differ between Ag NPs and ionic Ag at 30 and 60 mg Ag/kg. For dietary exposure, the uptake rate constant was up to 5 times higher for Ag NPs than for AgNO3, but this was related to feeding activity and exposure concentrations, while no difference in the elimination rate constants was found. When comparing both routes, dietary exposure resulted in lower Ag uptake rate constants but elimination rate constants did not differ. A fast Ag uptake was observed from both routes and most of the Ag taken up seemed not to be eliminated. Synchrotron X-ray fluorescence showed Ag in the S-cells of the hepatopancreas, thus supporting the observations from the kinetic experiment (i.e. low elimination). In addition, our results show that isopods have an extremely high Ag accumulation capacity, suggesting the presence of an efficient Ag storage compartment.

Keywords

Ag nanoparticles Bioaccumulation Exposure route Isopods Synchrotron 

Notes

Acknowledgments

This work was supported by a Ph.D. Grant to P.S. Tourinho by the Portuguese Science and Technology Foundation (SFRH/BD/80097/2011) and conducted in the context of NanoFATE, Collaborative Project CP-FP 247739 (2010–2014) under the 7th Framework Programme of the European Commission (FP7-NMP-ENV-2009, Theme 4), coordinated by C. Svendsen and D. Spurgeon of NERC—Centre for Ecology and Hydrology, UK-Wallingford; www.nanofate.eu.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10646_2015_1585_MOESM1_ESM.doc (424 kb)
Supplementary material 1 (DOC 424 kb)

References

  1. Allen HE, Fu G, Deng B (1993) Analysis of acid-volatile sulphide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12:1441–1453CrossRefGoogle Scholar
  2. Ardestani MM, Van Straalen NM, Van Gestel CAM (2014) Uptake and elimination kinetics of metals in soil invertebrates: a review. Environ Pollut 193:277–295CrossRefGoogle Scholar
  3. Benn T, CaVanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39:1875–1882CrossRefGoogle Scholar
  4. Coutris C, Hertel-Aas T, Lapied E, Joner EJ, Oughton DH (2012) Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 6:186–195CrossRefGoogle Scholar
  5. Crommentuijn T, Doodeman CJA, Doornekamp A, Van Der Pol JJ, Van Gestel CAM, Bedaux JJM (1994) Lethal body concentrations and accumulation patterns determine time-dependent toxicity of cadmium in soil arthropods. Environ Toxicol Chem 13:1781–1789CrossRefGoogle Scholar
  6. Dallinger R, Prosi F (1988) Heavy metals in the terrestrial isopod Porcellio scaber Latreille. II. Subcellular fractionation of metal-accumulating lysosomes from hepatopancreas. Cell Biol Toxicol 4:97–109CrossRefGoogle Scholar
  7. Dallinger R, Berger B, Birkel S (1992) Terrestrial isopods: useful biological indicators of urban metal pollution. Oecologia 89:32–41CrossRefGoogle Scholar
  8. Diez-Ortiz M, Lahive E, Kille P, Powell K, Morgan AJ, Jurkschat K, Van Gestel CAM, Mosselmans JFW, Svendsen C, Spurgeon DJ (2015) Uptake routes and toxicokinetics of silver nanoparticles and silver ions in the earthworm Lumbricus rubellus. Environ Toxicol Chem. doi: 10.1002/etc.3036
  9. Díez-Ortiz M, Giska I, Groot M, Borgman EM, Van Gestel CAM (2010) Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei. Chemosphere 80:1036–1043CrossRefGoogle Scholar
  10. Donker MH, Raedecker MH, Van Straalen NM (1996) The role of zinc regulation in the zinc tolerance mechanism of the terrestrial isopod Porcellio scaber. J Appl Ecol 33:955–964CrossRefGoogle Scholar
  11. Drobne D, Hopkin SP (1995) The toxicity of zinc to terrestrial isopods in a “standard” laboratory test. Ecotoxicol Environ Safe 31:1–6CrossRefGoogle Scholar
  12. Durán N, Marcato PD, De Souza GI, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208CrossRefGoogle Scholar
  13. Gobas F, Morrison HA (2000) Bioconcentration and biomagnification in the aquatic environment. Lewis Publishers, Boca RatonCrossRefGoogle Scholar
  14. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  15. Hames CAC, Hopkin SP (1989) The structure and function of the digestive system of terrestrial isopods. J Zool 217:599–627CrossRefGoogle Scholar
  16. Hendren CO, Mesnard X, Droge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569CrossRefGoogle Scholar
  17. Hopkin SP (1990a) Critical concentrations, pathways of detoxification and cellular ecotoxicology of metals in terrestrial arthropods. Funct Ecol 4:321–327CrossRefGoogle Scholar
  18. Hopkin SP (1990b) Species-specific differences in the net assimilation of zinc, cadmium, lead, copper and iron by the terrestrial isopods Oniscus asellus and Porcellio scaber. J Appl Ecol 27:460–474CrossRefGoogle Scholar
  19. Hopkin SP, Martin MH (1982) The distribution of zinc, cadmium, lead and copper within the woodlouse Oniscus asellus (Crustacea, Isopoda). Oecologia 54:227–232CrossRefGoogle Scholar
  20. Hopkin SP, Hardisty GN, Martin MH (1986) The woodlouse Porcellio scaber as a ‘biological indicator’ of zinc, cadmium, lead and copper pollution. Environ Pollut Ser B, Chem Phys 11:271–290CrossRefGoogle Scholar
  21. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908CrossRefGoogle Scholar
  22. Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 15:1–17CrossRefGoogle Scholar
  23. Kim B, Park C-S, Murayama M, Hochella MF Jr (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509–7514CrossRefGoogle Scholar
  24. Köhler H-R, Hüttenrauch K, Berkus M, Gräff S, Alberti G (1996) Cellular hepatopancreatic reactions of Porcellio scaber (Isopoda) as biomarkers for the evaluation of heavy metal toxicity in soils. Appl Soil Ecol 3:1–15CrossRefGoogle Scholar
  25. Koster M, Reijnders L, Van Oost NR, Peijnenburg WJGM (2005) Comparison of the method of diffusive gels in thin films with conventional extraction techniques for evaluating zinc accumulation in plants and isopods. Environ Pollut 133:103–116CrossRefGoogle Scholar
  26. Krause MO (1979) Atomic radiative and radiationless yields for K and L shells. J Phys Chem Ref Data 8:307–327CrossRefGoogle Scholar
  27. Loureiro S, Sousa JP, Nogueira AJA, Soares AMVM (2002) Assimilation efficiency and toxicokinetics of 14c-lindane in the terrestrial isopod Porcellionides pruinosus: the role of isopods in degradation of persistent soil pollutants. Ecotoxicology 11:481–490CrossRefGoogle Scholar
  28. Loureiro S, Sampaio A, Brandão A, Nogueira AJA, Soares AMVM (2006) Feeding behaviour of the terrestrial isopod Porcellionides pruinosus Brandt, 1833 (Crustacea, Isopoda) in response to changes in food quality and contamination. Sci Total Environ 369:119–128CrossRefGoogle Scholar
  29. Mosselmans JFW, Quinn PD, Dent AJ, Cavill SA, Moreno SD, Peach A, Leicester PJ, Keylock SJ, Gregory SR, Atkinson KD, Rosell JR (2009) I18—the microfocus spectroscopy beamline at the diamond light source. J Synchron Rad 16:818–824CrossRefGoogle Scholar
  30. Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374Google Scholar
  31. Nahmani J, Hodson ME, Black S (2007) A review of studies performed to assess metal uptake by earthworms. Environ Pollut 145:402–424CrossRefGoogle Scholar
  32. Nieboer E, Richardson DHS (1980) The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions. Environ Pollut (Ser B) 1:3–26CrossRefGoogle Scholar
  33. Odendaal JP, Reinecke AJ (1999) The sublethal effects and accumulation of cadmium in the terrestrial isopod Porcellio laevis Latr. (Crustacea, Isopoda). Arch Environ Contam Toxicol 36:64–69CrossRefGoogle Scholar
  34. Odendaal JP, Reinecke AJ (2004) Evidence of metal interaction in the bioaccumulation of cadmium and zinc in Porcellio laevis (Isopoda) after exposure to individual and mixed metals. Water Air Soil Pollut 156:145–161CrossRefGoogle Scholar
  35. Pipan-Tkalec Ž, Drobne D, Vogel-Mikuš K, Pongrac P, Regvar M, Štrus J, Pelicon P, Vavpetič P, Grlj N, Remškar M (2011) Micro-PIXE study of Ag in digestive glands of a nano-Ag fed arthropod (Porcellio scaber, Isopoda, Crustacea). Nucl Instrum Methods Phys Res Sect B 269:2286–2291CrossRefGoogle Scholar
  36. Prosi F, Dallinger R (1988) Heavy metals in the terrestrial isopod Porcellio scaber Latreille. I. Histochemical and ultrastructural characterization of metal-containing lysosomes. Cell Biol Toxicol 4:81–96CrossRefGoogle Scholar
  37. Schlich K, Klawonn T, Terytze K, Hund-Rinke K (2013) Effects of silver nanoparticles and silver nitrate in the earthworm reproduction test. Environ Toxicol Chem 32:181–188CrossRefGoogle Scholar
  38. Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5:432–444CrossRefGoogle Scholar
  39. Skip B, Bednarska AJ, Laskowski R (2014) Toxicokinetics of metals in terrestrial invertebrates: making things straight with the one-compartment principle. PLoS One 9:e108740CrossRefGoogle Scholar
  40. Solé VA, Papillon E, Cotte M, Walter Ph, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta, Part B 62:63–68CrossRefGoogle Scholar
  41. Sousa JP, Loureiro S, Pieper S, Frost M, Kratz W, Nogueira AJA, Soares AMVM (2000) Soil and plant diet exposure routes and toxicokinetics of lindane in a terrestrial isopod. Environ Toxicol Chem 19:2557–2563CrossRefGoogle Scholar
  42. Tourinho PS, van Gestel CAM, Jurkschat K, Soares AMVM, Loureiro S (2015) Effects of soil and dietary exposures to Ag nanoparticles and AgNO3 in the terrestrial isopod Porcellionides pruinosus. Environ Pollut 205:170–177CrossRefGoogle Scholar
  43. Udovic M, Drobne D, Lestan D (2009) Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil. Environ Pollut 157:2822–2829CrossRefGoogle Scholar
  44. Van Gestel CAM, Straalen NM (1994) Ecotoxicological test systems for terrestrial invertebrates. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of soil organisms. CRC Lewis Publishers, Boca Raton, pp 205–228Google Scholar
  45. Van Straalen NM, Donker MH, Vijver MG, Van Gestel CAM (2005) Bioavailability of contaminants estimated from uptake rates into soil invertebrates. Environ Pollut 136:409–417CrossRefGoogle Scholar
  46. Vijver MG, Van Gestel CAM, Lanno RP, Van Straalen NM, Peijnenburg WJGM (2004) Internal metal sequestration and its ecotoxicological releVance: a review. Environ Sci Technol 38:4705–4712CrossRefGoogle Scholar
  47. Vijver MG, Vink JP, Jager T, Van Straalen NM, Wolterbeek HT, Van Gestel CAM (2006) Kinetics of Zn and Cd accumulation in the isopod Porcellio scaber exposed to contaminated soil and/or food. Soil Biol Biochem 38:1554–1563CrossRefGoogle Scholar
  48. Vink K, Tompot A, Hermans M, Van Straalen NM, Dewi I, Bedaux J (1995) The importance of the exposure route when testing the toxicity of pesticides to saprotrophic isopods. Environ Toxicol Chem 14:1225–1232CrossRefGoogle Scholar
  49. Waalewijn-Kool PL, Klein K, Forniés RM, Van Gestel CAM (2014) Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida. Ecotoxicol 23:1–9CrossRefGoogle Scholar
  50. Zidar P, Hribar M, Žižek S, Štrus J (2012) Behavioural response of terrestrial isopods (Crustacea: Isopoda) to pyrethrins in soil or food. Eur J Soil Biol 51:51–55CrossRefGoogle Scholar
  51. Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev 77:455–493CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Paula S. Tourinho
    • 1
  • Cornelis A. M. van Gestel
    • 2
  • A. John Morgan
    • 3
  • Peter Kille
    • 3
  • Claus Svendsen
    • 4
  • Kerstin Jurkschat
    • 5
  • J. Fred W. Mosselmans
    • 6
  • Amadeu M. V. M. Soares
    • 1
  • Susana Loureiro
    • 1
  1. 1.Department of Biology and the Centre for Environmental and Marine StudiesUniversity of AveiroAveiroPortugal
  2. 2.Department of Ecological Science, Faculty of Earth and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
  3. 3.Cardiff School of Biosciences, BIOSI 1University of CardiffCardiffUK
  4. 4.Centre for Ecology and HydrologyWallingfordUK
  5. 5.Department of MaterialsOxford UniversityOxfordUK
  6. 6.Diamond Light Source Ltd.DidcotUK

Personalised recommendations