Advertisement

Ecotoxicology

, Volume 25, Issue 1, pp 163–177 | Cite as

Copper toxicity in a natural reference soil: ecotoxicological data for the derivation of preliminary soil screening values

  • Ana Luísa Caetano
  • Catarina Ribeiro Marques
  • Fernando Gonçalves
  • Eduardo Ferreira da Silva
  • Ruth Pereira
Article

Abstract

The risk assessment of contaminated soils is conventionally done with the support of soil screening values (SSVs). Since SSVs are still unavailable for many European countries, including Portugal, standardized toxicity tests are urgently claimed for their derivation. Hence, this work aimed the generation of toxicity values for copper (Cu) in a natural reference soil (PTRS1) targeting different terrestrial species, endpoints and soil functions, as to derive a preliminary Cu SSV. For this, the Assessment Factor approach was applied, which allowed calculating predicted no effect concentrations (PNEC) for Cu that will be the basis for SSV proposal. In order to increase the reliability of the PNEC, and hence of the SSV, a lab/field factor was applied to correct the toxicity values used for PNEC determination. Cu affected urease, cellulase and nitrogen mineralization activities. The EC50 values calculated for the invertebrates reproduction were 130.9, 165.1 and 191.6 mg Cu Kg−1soildw for Eisenia andrei, Enchytraeus crypticus and Folsomia candida, respectively. Cu inhibited seed germination mainly for Lactuca sativa, whilst it was toxic for the growth of different plant species (EC50s between 89 and 290.5 mg Cu Kg−1soildw). Based on the outcomes gathered, we proposed SSVs for Cu ranging between 26.3 and 31.8 mg Kg−1 soildw, which is above the background values reported and below all the EC20s recorded for the species and endpoints herein analyzed. Overall, this work describes a procedure that could be easily followed by other European countries wishing to derive SSVs adjusted to their soils.

Keywords

Assessment factor approach Soil invertebrates Terrestrial plants Soil enzymes activity Soil risk assessment 

Notes

Acknowledgments

Caetano A. L. was supported by a PhD Grant from FCT (Fundação para a Ciência e Tecnologia) (ref. SFRH/BD/48943/2008). Catarina R. Marques was supported by a Post-doctoral grant from FCT (ref. SFRH/BPD/47292/2008).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Alvarenga P, Palma P, Gonçalves AP et al (2008) Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin. Chemosphere 72:1774–1781. doi: 10.1016/j.chemosphere.2008.04.042 CrossRefGoogle Scholar
  2. Amorim M, Römbke J, Schallnass H, Soares A (2005) Effect of soil properties and aging on the toxicity of copper for Enchytraeus albidus, Enchytraeus luxuriosus, and Folsomia candida. Environ Toxicol Chem 24:1875–1885. doi: 10.1897/04-505R.1 CrossRefGoogle Scholar
  3. An Y (2004a) Toxicity of benzene, toluene, ethylbenzene, and xylene (BTEX) mixtures to Sorghum bicolor and Cucumis sativus. Bull Environ Contam Toxicol 72:1006–1011. doi: 10.1007/s00128-004-0343-y CrossRefGoogle Scholar
  4. An Y (2004b) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut 127:21–26. doi: 10.1016/S0269-7491(03)00263-X CrossRefGoogle Scholar
  5. An Y (2006) Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere 62:1359–1365. doi: 10.1016/j.chemosphere.2005.07.044 CrossRefGoogle Scholar
  6. Anderson J, Hooper M, Zak J, Cox S (2009) Molecular and functional assessment of bacterial community convergence in metal-amended soils. Microb Ecol 58:10–22. doi: 10.1007/s00248-008-9467-7 CrossRefGoogle Scholar
  7. Antunes SC, Pereira R, Marques SM, Castro BB, Gonçalves F (2011) Impaired microbial activity caused by metal pollution: a field study in a deactivated uranium mining area. Sci Total Environ 410:87–95. doi: 10.1016/j.scitotenv.2011.09.003 CrossRefGoogle Scholar
  8. BBodSchV (1999) Federal soil protection and contaminated sites ordinance (BBodSchV) dated 12 July 1999. Bonn, GermanyGoogle Scholar
  9. Boekhold AE (2008) Ecological risk assessment in legislation on contaminated soil in The Netherlands. Sci Total Environ 406:518–522. doi: 10.1016/j.scitotenv.2008.07.018 CrossRefGoogle Scholar
  10. Caetano A, Gonçalves F, Sousa J et al (2012) Characterization and validation of a Portuguese natural reference soil to be used as substrate for ecotoxicological purposes. J Environ Monit 14:925–936. doi: 10.1039/c2em10827e CrossRefGoogle Scholar
  11. Carlon C (2007) Derivation methods of soil screening values in europe. a review and evaluation of national procedures towards harmonisation. European Commission, Joint Research Centre, Ispra, p 306 EUR 22805-EN Google Scholar
  12. CCME (1999) Canadian soil quality guidelines for the protection of environmental and human health—Copper. In: Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg, p 7Google Scholar
  13. Criel P, Lock K, Eeckhout HV, Oorts K, Smolders E, Janssen CR (2008) Influence of soil properties on copper toxicity for two soil invertebrates. Environ Toxicol Chem 27:1748–1755. doi: 10.1897/07-545 CrossRefGoogle Scholar
  14. Crommentuijn T, Sijm D, de Bruijn J, van den Hoop M, van Leeuwen K, van de Plassche E (2000) Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. J Environ Manag 60:121–143. doi: 10.1006/jema.2000.0354 CrossRefGoogle Scholar
  15. Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Lavelle P (2004) Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl Soil Ecol 25:99–109. doi: 10.1016/j.apsoil.2003.09.003 CrossRefGoogle Scholar
  16. De Santiago-Martín A, Cheviron N, Quintana JR, González C, Lafuente AL, Mougin C (2013) Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area. Arch Environ Contam Toxicol 64:388–398. doi: 10.1007/s00244-012-9842-8 CrossRefGoogle Scholar
  17. Dinesh R, Ramanathan G, Singh H (1995) Influence of chloride and sulphate ions on soil enzymes. Agron Crop Sci 175(2):129–133. doi: 10.1111/j.1439-037X.1995.tb01138.x CrossRefGoogle Scholar
  18. EC (European Commission) (2003) Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances, Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Joint research Centre, IspraGoogle Scholar
  19. EC (European Commission) (2006) Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the management of waste from extractive industries and amending Directive 2004/35/ECGoogle Scholar
  20. Fishwick S (2004) Soil screening values for use in UK ecological risk assessment. Soil Quality & Protection, Air Land And Water Group. Environment Agency, Bristol, p 81Google Scholar
  21. Ge C, Zhang Q (2011) Microbial community structure and enzyme activities in a sequence of copper-polluted soils. Pedosphere 21:164–169. doi: 10.1016/S1002-0160(11)60114-8 CrossRefGoogle Scholar
  22. Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414. doi: 10.1016/S0038-0717(97)00270-8 CrossRefGoogle Scholar
  23. Ginocchio R, Rodríguez PH, Badilla-Ohlbaum R, Allen HE, Lagos GE (2002) Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions. Environ Toxicol Chem 21:1736–1744. doi: 10.1002/etc.5620210828 CrossRefGoogle Scholar
  24. Gorsuch J, Merrington G, Welp G, Dwyer R, Hennelly M, Schoeters I (2006) Assessing risks of metals added to soils in Europe and North America. Environ Toxicol Chem 25:631–634. doi: 10.1897/ED2503.1 CrossRefGoogle Scholar
  25. Gülser F, Erdoğan E (2008) The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ Monit Assess 145:127–133. doi: 10.1007/s10661-007-0022-7 CrossRefGoogle Scholar
  26. Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52:265–275CrossRefGoogle Scholar
  27. Hassen A, Jedidi N, Cherif M, M’Hiri A, Boudabous A, van Cleemput O (1998) Mineralization of nitrogen in a clayey loamy soil amended with organic wastes enriched with Zn, Cu and Cd. Bioresour Technol 64:39–45. doi: 10.1016/S0960-8524(97)00153-3 CrossRefGoogle Scholar
  28. Horswell J, Speir TW, van Schaik AP (2003) Bio-indicators to assess impacts of heavy metals in land-applied sewage sludge. Soil Biol Biochem 35:1501–1505. doi: 10.1016/S0038-0717(03)00247-5 CrossRefGoogle Scholar
  29. Hu B, Liang D, Liu J, Xie J (2013) Ecotoxicological effects of copper and selenium combined pollution on soil enzyme activities in planted and unplanted soils. Environ Toxicol Chem 32:1109–1116. doi: 10.1002/etc.2152 CrossRefGoogle Scholar
  30. Inácio M, Pereira V, Pinto M (2008) The soil geochemical atlas of Portugal: overview and applications. J Geochem Explor 98:22–33. doi: 10.1016/j.gexplo.2007.10.004 CrossRefGoogle Scholar
  31. ISO 11267 (International Organization for Standardization) (1999) Soil quality: inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. International Organization for Standardization, GenevaGoogle Scholar
  32. ISO 11268–2 (International Organization for Standardization) (2012) Soil quality: effects of pollutants on earthworms (Eisenia fetida)—Part 2: determination of effects on reproduction. International Organization for Standardization, GenevaGoogle Scholar
  33. ISO 11269–2 (International Organization for Standardization) (2005) Soil quality: determination of the effects of pollutants on soil flora—Part 2: effects of chemicals on the emergence and growth of higher plants. International Organization for Standardization, GeneveGoogle Scholar
  34. ISO 16387 (International Organization for Standardization) (2004) Soil quality: effects of pollutants on Enchytraeidae (Enchytraeus sp.)—determination of effects on reproduction and survival. International Organization for Standard, GenevaGoogle Scholar
  35. Jänsch S, Römbke J, Schallnaß H, Terytze K (2007) Derivation of soil values for the path soil–soil organisms for metals and selected organic compounds using species sensitivity distributions. Environ Sci Pollut Res Int 14:308–318. doi: 10.1065/espr2006.06.310 CrossRefGoogle Scholar
  36. Janssen C, Schamphelaere K, Heijerick D, Muyssen B, Locka K, Bossuyta B, Vangheluwea M, Van Spranga P (2000) Uncertainties in the environmental risk assessment of metals. Hum Ecol Risk Assess An Int J 6:1003–1018. doi: 10.1080/10807030091124257 CrossRefGoogle Scholar
  37. Jensen J, Mesman M (2006) Ecological Risk Assessment of Contaminated Land. Decision Support for site specific investigations. RIVM report number 711701047. National Institute for Public Health and the Environment, The Netherlands, p 136Google Scholar
  38. Kabata-Pendias A (2010) Trace elements in soils and plants, 3rd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  39. Kakkar P, Jaffery FN (2005) Biological markers for metal toxicity. Environ Toxicol Pharmacol 19:335–349. doi: 10.1016/j.etap.2004.09.003 CrossRefGoogle Scholar
  40. Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6(1):68–72. doi: 10.1007/BF00257924 CrossRefGoogle Scholar
  41. Kandeler F, Kampichler C, Horak O (1996) Influence of heavy metals on the functional diversity of soil microbial communities. Biol Fertil Soils 23:299–306. doi: 10.1007/BF00335958 CrossRefGoogle Scholar
  42. Kuperman R, Amorim M, Römbke J et al (2006) Adaptation of the enchytraeid toxicity test for use with natural soil types. Eur J Soil Biol 42:S234–S243. doi: 10.1016/j.ejsobi.2006.07.028 CrossRefGoogle Scholar
  43. Lamb D, Ming H, Megharaj M, Naidu R (2010) Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead. Arch Environ Contam Toxicol 59:424–432. doi: 10.1007/s00244-010-9481-x CrossRefGoogle Scholar
  44. Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57:39–47CrossRefGoogle Scholar
  45. Lee S, Kim E, Hyun S, Kim J (2009) Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions. J Hazard Mater 170:382–388. doi: 10.1016/j.jhazmat.2009.04.088 CrossRefGoogle Scholar
  46. Macdonald CA, Clark IM, Zhao F-J, Hirsch PR, Singh BK, McGrath SP (2011) Long-term impacts of zinc and copper enriched sewage sludge additions on bacterial, archaeal and fungal communities in arable and grassland soils. Soil Biol Biochem 43:932–941. doi: 10.1016/j.soilbio.2011.01.004 CrossRefGoogle Scholar
  47. Mackie K, Müller T, Kandeler E (2012) Remediation of copper in vineyards – a mini review. Environ Pollut 167:16–26. doi: 10.1016/j.envpol.2012.03.023 CrossRefGoogle Scholar
  48. McBride MB (1995) Toxic metal accumulation from agricultural use of sludge: are USEPA regulations prospective? J Environ Qual 24:5–18CrossRefGoogle Scholar
  49. Merrington G, Fishwic S, Brooke D (2006) The derivation and use of soil screening values for metals for the ecological risk assessment of contaminated land: a regulatory perspective. L Contam Reclam 14:673–684. doi: 10.2462/09670513.794 CrossRefGoogle Scholar
  50. Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213. doi: 10.1007/s00244-002-1116-4 CrossRefGoogle Scholar
  51. Nagajyoti P, Lee K, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. doi: 10.1007/s10311-010-0297-8 CrossRefGoogle Scholar
  52. O’Halloran K (2006) Toxicological considerations of contaminants in the terrestrial environment for ecological risk assessment. Hum Ecol Risk Assess 12:74–83. doi: 10.1080/10807030500428603 CrossRefGoogle Scholar
  53. OECD 226 (2008) OECD guidelines for the testing of chemicals: predatory mites (Hypoaspis (Geolaelaps) aculeifer) reproduction test in soil. Organization for Economic Co-operation and Development, ParisGoogle Scholar
  54. Öhlinger R (1996) Soil sampling and sample preparation. In: Schinner F, Öhlinger R, Kandeler E, Margesin R (eds) Methods in soil biology. Springer, Berlin Heidelberg. doi: 10.1007/978-3-642-60966-4 Google Scholar
  55. Owojori OJ, Reinecke AJ, Rozanov AB (2009) The combined stress effects of salinity and copper on the earthworm Eisenia fetida. Appl Soil Ecol 41:277–285. doi: 10.1016/j.apsoil.2008.11.006 CrossRefGoogle Scholar
  56. Pereira R, Sousa J, Ribeiro R, Gonçalves F (2006) Microbial indicators in mine soils (S. Domingos Mine, Portugal). Soil Sediment Contam 15:147–167. doi: 10.1080/15320380500506813 CrossRefGoogle Scholar
  57. Pereira R, Marques CR, Ferreira MJS, Marques CR, Neves MFJV, Caetano AL, Antunes SC, Freitas AC, Mendo S, Gonçalves F (2009) Phytotoxicity and genotoxicity of soils from an abandoned uranium mine area. Appl Soil Ecol 42:209–220. doi: 10.1016/j.apsoil.2009.04.002 CrossRefGoogle Scholar
  58. Płaza GA, Nałecz-Jawecki G, Pinyakong O, Illmer P, Margesin R (2010) Ecotoxicological and microbiological characterization of soils from heavy-metal- and hydrocarbon-contaminated sites. Environ Monit Assess 163(1–4):477–488. doi: 10.1007/s10661-009-0851-7 Google Scholar
  59. Römbke J, Amorim M (2004) Tackling the heterogeneity of soils in ecotoxicological testing. J Soils Sediments 4:276–281. doi: 10.1007/BF02991124 CrossRefGoogle Scholar
  60. Römbke J, Jänsch S, Junker T, Pohl B, Scheffczyk A, Schallnaß H-J (2006) Improvement of the applicability of ecotoxicological tests with earthworms, springtails, and plants for the assessment of metals in natural soils. Environ Toxicol Chem 25:776–787. doi: 10.1897/04-584R.1 CrossRefGoogle Scholar
  61. Rossel D, Tarradellas J, Bitton G, Morel JL (1996) Use of enzymes in soil ecotoxicology: a case for dehydrogenase and hydrolytic enzymes. CRC Press, Boca RatonGoogle Scholar
  62. Ruyters S, Salaets P, Oorts K, Smolders E (2013) Copper toxicity in soils under established vineyards in Europe: a survey. Sci Total Environ 443:470–477. doi: 10.1016/j.scitotenv.2012.11.001 CrossRefGoogle Scholar
  63. Sandifer R, Hopkin S (1996) Effects of pH on the toxicity of cadmium, copper, lead and zinc to Folsomia candida Willem, 1902 (Collembola) in a standard laboratory test system. Chemosphere 33:2475–2486. doi: 10.1016/S0045-6535(96)00348-7 CrossRefGoogle Scholar
  64. Sauvé S, Cook N, Hendershot WH, McBride MB (1996) Linking plant tissue concentrations and soil copper pools in urban contaminated soils. Environ Pollut 94:153–157. doi: 10.1016/S0269-7491(96)00081-4 CrossRefGoogle Scholar
  65. SCHER (2009) Voluntary risk assessment report on copper and its compounds: environment. Accessed 21 Sep 2015 http://echa.europa.eu/web/guest/copper-voluntary-risk-assessment-reports
  66. Schinner F, von Mersi W (1990) Xylanase, CM-cellulase and invertase activity in soil, an improved method. Soil Biol Biochem 22(4):511–515. doi: 10.1016/0038-0717(90)90187-5 CrossRefGoogle Scholar
  67. Schinner F, Kandeler E, Öhlinger R, Margesin R (1996) Methods in soil biology. Springer-Verlag, GermanyCrossRefGoogle Scholar
  68. Schulte E, Kelling A (2004) Understanding Plant Nutrients: Soil and Applied Copper. A2527. University of Wisconsin-ExtensionGoogle Scholar
  69. Scott-Fordsmand JJ, Pedersen BM (1995) Quality Criteria for Selected Inorganic Compounds. Working report from the Ministry of Environment No. 48, DKGoogle Scholar
  70. Sivakumar S, Nityanandi D, Barathi S et al (2012) Selected enzyme activities of urban heavy metal-polluted soils in the presence and absence of an oligochaete, Lampito mauritii (Kinberg). J Hazard Mater 227–228:179–184. doi: 10.1016/j.jhazmat.2012.05.030 CrossRefGoogle Scholar
  71. Smolders E, Oorts K, Van Sprang P, Schoeters I, Janssen CR, McGrath SP, McLaughlin MJ (2009) Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ Toxicol Chem 28:1633–1642. doi: 10.1897/08-592.1 CrossRefGoogle Scholar
  72. Spurgeon D, Hopkin S (1995) Extrapolation of the laboratory-based OECD earthworm toxicity test to metal-contaminated field sites. Ecotoxicology 4:190–205. doi: 10.1007/BF00116481 CrossRefGoogle Scholar
  73. Stöven K, Schnug E (2009) Long term effects of heavy metal enriched sewage sludge disposal in agriculture on soil biota. Agr Forest Res 2:131–138Google Scholar
  74. Taylor J, Wilson B, Mills M, Burns R (2002) Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34(3):387–401. doi: 10.1016/S0038-0717(01)00199-7 CrossRefGoogle Scholar
  75. Thounaojam T, Panda P, Mazumdar P, Kumar D, Sharma GD, Sahoo L, Sanjib P (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Bioch 53:33–39. doi: 10.1016/j.plaphy.2012.01.006 CrossRefGoogle Scholar
  76. Trasar-Cepeda MC, Gil-Sotres F (1988) Kinetics of acid phosphatase activity in various soils of Galicia (NW Spain). Soil Biol Biochem 20:275–280. doi: 10.1016/0038-0717(88)90003-X CrossRefGoogle Scholar
  77. USEPA (Environmental Protection Agency and Office of Solid Waste and Emergency Response) (2007) Ecological Soil Screening Levels for Copper: Interim Final. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, DC. OSWER Directive 9285.7-68Google Scholar
  78. Van Gestel C, Borgman E, Verweij R, Ortiz M (2011) The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates. Ecotoxicol Environ Saf 74:1–9. doi: 10.1016/j.ecoenv.2010.10.001 CrossRefGoogle Scholar
  79. Verma J, Singh V, Yadav J (2011) Effect of copper sulphate on seed germination, plant growth and peroxidase activity of mung bean (Vigna radiata). Int J Plant Sci 7(2):200–204. doi: 10.3923/ijb.2011.200.204 Google Scholar
  80. Vogel I, Terytze K, Römbke J, Jänsch S (2009) Methodologie der Ableitung von Vorsorgewerten unter besonderer Berücksichtigung der Bodenorganismen im Hinblick auf den Schutz der Lebensraumfunktion von Böden. Handbuch des Bodenschutzes. Rosenkranz, D. et al. (eds.), E. Schmidt Verlag, Berlin. 48. Lfg. IX/09, Nr. 3555: 1-18Google Scholar
  81. Wang M, Markert B, Shen W, Chen W, Peng C, Ouyang Z (2011) Microbial biomass carbon and enzyme activities of urban soils in Beijing. Environ Sci Pollut Res Int 18:958–967. doi: 10.1007/s11356-011-0445-0 CrossRefGoogle Scholar
  82. Weeks J, Comber S (2005) Ecological risk assessment of contaminated soil. Miner Mag 69:601–613. doi: 10.1180/0026461056950274 CrossRefGoogle Scholar
  83. Wightwick AM, Reichman SM, Menzies NW, Allinson G (2013) The effects of copper hydroxide, captan and trifloxystrobin fungicides on soil phosphomonoesterase and urease activity. Water Air Soil Pollut 224:1703. doi: 10.1007/s11270-013-1703-1 CrossRefGoogle Scholar
  84. Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:230–248. doi: 10.1016/j.ecoenv.2005.03.026 CrossRefGoogle Scholar
  85. Wyszkowska J, Kucharski J, Lajszner W (2005) Enzymatic activities in different soils contaminated with copper. Polish J Environ Stud 14:659–664Google Scholar
  86. Xu J, Yang L, Wang Z, Dong G, Huang J, Wang Y (2006) Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere 62:602–607. doi: 10.1016/j.chemosphere.2005.05.050 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ana Luísa Caetano
    • 1
    • 2
  • Catarina Ribeiro Marques
    • 1
    • 2
  • Fernando Gonçalves
    • 1
    • 2
  • Eduardo Ferreira da Silva
    • 3
  • Ruth Pereira
    • 4
    • 5
  1. 1.Department of BiologyUniversity of AveiroAveiroPortugal
  2. 2.CESAM, University of AveiroAveiroPortugal
  3. 3.Department of GeosciencesUniversity of Aveiro, GeoBioTec Research CenterAveiroPortugal
  4. 4.Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
  5. 5.CIIMAR, Interdisciplinary Centre of Marine and Environmental ResearchPortoPortugal

Personalised recommendations