, Volume 24, Issue 9, pp 1848–1857 | Cite as

Biochemical and growth performance of the aquatic macrophyte Azolla filiculoides to sub-chronic exposure to cylindrospermopsin

  • Catarina Santos
  • Joana Azevedo
  • Alexandre Campos
  • Vitor Vasconcelos
  • Ana L. Pereira


Physiological and biochemical effects of cylindrospermopsin (CYN), a cyanobacterial toxin that inhibits protein synthesis and released during a harmful cyanobacterial bloom, has been overlooked in plants. Therefore, at the present research, the toxic effects (physiological and biochemical) of a crude extract containing CYN were assessed in the aquatic fern Azolla filiculoides exposed to three concentrations (0.05, 0.5 and 5 μg CYN mL−1). At 5 μg CYN mL−1, fern growth rate has showed a drastic decrease (0.001 g g−1 day−1) corresponding to a 99.8 % inhibition, but at the concentrations of 0.05 and 0.5 μg CYN mL−1 the growth rate was similar to the control plants. Growth rate also indicated a IC50 of 2.9 μg CYN mL−1. Those data point to the presence of other compounds in the crude extract may stimulate the fern growth and/or the fern is tolerant to CYN. Chlorophyll (a and b), carotenoids and protein content as well as the activities of glutathione reductase (GR) and glutathione-S-transferase (GST) has increased at 5 μg CYN mL−1 which may indicate that photosynthesis and protein synthesis are not affected by CYN and the probable activation of defense and detoxifying mechanisms to overcome the effects induced by the presence of CYN. Low uptake of cylindrospermopsin (1.314 μg CYN g−1 FW) and low bioconcentration factor (0.401) point towards to a safe use of A. filiculoides as biofertilizer and as food source, but also indicate that the fern is not suitable for CYN phytoremediation.


Azolla filiculoides Cylindrospermopsin Antioxidative enzymes Growth rate Photosynthetic pigments 



This research was partially supported by 1) the European Regional Development Fund (ERDF) through the COMPETE (Operational Competitiveness Programme) and national funds through FCT (Foundation for Science and Technology) under the project PEst-C/MAR/LA0015/2013 and 2) Porto University under the project IJUP2011_3. The European Social Funding (FSE) under the Human Potential Operational Program (POPH) of National Strategic Reference Board (QREN) supports the fellowship SFRH/BPD/44459/2008 to Ana L. Pereira. Thanks to Stephan Haefele and Agnes Padre of IRRI for sending A. filiculoides (FI1001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Apeldoorn ME, van Egmond HP, Speijers GJA, Bakker GJI (2007) Toxins of cyanobacteria. Mol Nutr Food Res 51:7–60. doi: 10.1002/mnfr.200600185 CrossRefGoogle Scholar
  2. Banker R, Carmeli S, Werman M, Teltsch B, Porate R, Sukenik A (2001) Uracil moiety is required for toxicity of the cyanobacterial hepatotoxin cylindrospermopsin. J Toxicol Environ Health Part A 62:281–288. doi: 10.1080/009841001459432 CrossRefGoogle Scholar
  3. Beyer D, Surányi G, Vasas G, Roszik J, Erdődi F, Hamvas M-M, Bácsi I, Bátori R, Serfőző Z, Szigeti ZM, Vereb G, Demeter Z, Gonda S, Máthé C (2009) Cylindrospemopsin induces alterations of root histology and microtubule organization in common reed (Phragmites australis) plantlets cultured in vitro. Toxicon 54:440–449. doi: 10.1016/j.toxicon.2009.05.008 CrossRefGoogle Scholar
  4. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantifiers of proteins, utilising the principle of protein dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  5. Campos A, Araújo P, Pinheiro C, Azevedo J, Osório H, Vasconcelos V (2013) Effects on growth, antioxidant enzyme activity and levels of extracellular proteins in green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermospin. Ecotoxicol Environ Saf 94:45–53. doi: 10.1016/j.ecoenv.2013.04.019 CrossRefGoogle Scholar
  6. Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480Google Scholar
  7. Carrapiço F (2010) Azolla as a superorganism. Its implication in symbiotic studies. In: Seckbach J and Grube M (eds) Symbioses and stress: Joint ventures in biology, cellular origin, life in extreme habitats and astrobiology. Springer, Amesterdam, pp 225–241Google Scholar
  8. Carrapiço F, Teixeira G, Diniz MA (2000) Azolla as a biofertiliser in Africa. A challenge for the future. Revista de Ciências Agrárias 23:120–138Google Scholar
  9. Chiswell RK, Shaw GR, Eaglesham G, Smith MJ, Norris RL, Seawright AA, Moore MR (1999) Stability of cylindrospermopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: effect of pH, temperature, and sunlight on decomposition. Environ Toxicol 14:155–161. doi: 10.1002/(SICI)1522-7278(199902 CrossRefGoogle Scholar
  10. Costa ML, Santos MCR, Carrapiço F, Pereira AL (2009) Azolla-Anabaena’s behaviour in urban wastewater and artificial media—influence of combined nitrogen. Water Res 43:3743–3750. doi: 10.1016/j.watres.2009.05.038 CrossRefGoogle Scholar
  11. Cruz AA, Hiskia A, Kaloudis T, Chernoff N, Hill D, Antoniou MG, He X, Loftin K, O’Shea K, Zhao C, Peleaz M, Han C, Lynch TJ, Dionysiou DD (2013) A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. Environ Sci 15:1979–2003. doi: 10.1039/c3em00353a Google Scholar
  12. Flohé L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzimol 105:114–121. doi: 10.1016/S0076-6879(84)05015-1 CrossRefGoogle Scholar
  13. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi: 10.1016/j.plaphy.2010.08.016 CrossRefGoogle Scholar
  14. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases: the first enzymatic step in mercapturiac acid formation. J Biol Chem 249:7130–7139Google Scholar
  15. Kaplan D, Calvert HE, Peters GA (1986) The Azolla-Anabaena azollae relationship. XII. Nitrogenase activity and phycobiliproteins of the endophyte as a function of leaf age and cell type. Plant Physiol 80:884–890. doi: 10.1104/pp.80.4.884 CrossRefGoogle Scholar
  16. Karjalainen M, Reinikainen M, Lindvall F, Spoof L, Meriluoto JAO (2003) Uptake and accumulation of dissolved, radiolabeled nodularin in Baltic Sea zooplankton. Environ Toxicol 18:52–60. doi: 10.1002/tox.10100 CrossRefGoogle Scholar
  17. Khatun A, Ali MA, Dingle JG (1999) Comparison of the nutritive value for laying hens of diets containing azolla (Azolla pinnata) based on formulation using digestible protein and digestible amino acid versus total protein and total amino acid. Animal Feed Sci Technol 81:43–56. doi: 10.1016/S0377-8401(99)00071-1 CrossRefGoogle Scholar
  18. Kinnear S (2010) Cylindrospermopsin: a decade of progress in bioaccumulation research. Mar Drugs 8:542–564. doi: 10.3390/md8030542 CrossRefGoogle Scholar
  19. Kinnear SHW, Duivenvoorden LJ, Fabbro LD (2007) Growth and bioaccumulation in Spirodela oligorrhiza following exposure to Cylindrospermopsis raciborskii whole cell extracts. Aust J Ecotoxicol 13:19–31Google Scholar
  20. Kinnear SHW, Fabbro LD, Duivenvoorden LJ (2008) Variable growth responses of water thyme (Hydrilla verticillata) to whole-cell extracts of Cylindrospermopsis raciborskii. Arch Environ Contam Toxicol 54:187–194. doi: 10.1007/s00244-007-9026-0 CrossRefGoogle Scholar
  21. Kittler K, Schreiner M, Krumnain A, Manzei S, Koch M, Rohn S, Maul R (2012) Uptake of the cyanobacterial toxin cylindrospermopsin in Brassica vegetables. Food Chem 133:875–879. doi: 10.1016/j.foodchem.2012.01.107 CrossRefGoogle Scholar
  22. Kotai J (1972) Instruction for preparation of modified nutrient solution Z8 for algae. Publication B-11/69, Norwegian Institute for Water Research, OsloGoogle Scholar
  23. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382. doi: 10.1016/0076-6879(87)48036-1 CrossRefGoogle Scholar
  24. Maejima K, Kitoh S, Uheda E, Shiomi N (2001) Response of 19 Azolla strains to a high concentration of ammonium ions. Plant Soil 234:247–252. doi: 10.1023/A:1017912613526 CrossRefGoogle Scholar
  25. Máthé C, Vasas G, Borbély G, Erdődi F, Beyer D, Kiss A, Surányi G, Gonda S, Jámbrik K, Hamvas M-M (2013) Histological, cytological and biochemical alterations induced by microcystin-LR and cylindrospermopsin in white mustard (Sinapsis alba L.) seedlings. Acta Biol Hung 64:71–85. doi: 10.1556/ABiol.64.2013.1.7 CrossRefGoogle Scholar
  26. Metcalf JS, Barakate A, Codd GA (2004) Inhibition of plant protein synthesis by the cyanobacterial hepatotoxin, cylindrospermopsin. FEMS Microbiol Lett 235:125–129. doi: 10.1016/j.femsle.2004.04.025 CrossRefGoogle Scholar
  27. OECD (2002) OECD guidelines for the testing of chemicals. Revised proposal for a new guideline 221. Lemna sp. growth inhibition test. OECD. Accessed 13 June 2014
  28. Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8:1650–1680. doi: 10.3390/md8051650 CrossRefGoogle Scholar
  29. Pereira AL, Carrapiço F (2009) Culture of Azolla filiculoides in artificial conditions. Plant Biosyst 143:431–434. doi: 10.1080/11263500903172110 CrossRefGoogle Scholar
  30. Pietsch C, Wiegand C, Ame MV, Nicklisch A, Wunderlin D, Pflugmacher S (2001) The effects of a cyanobacterial crude extract on different aquatic organisms: evidence for cyanobacterial toxin modulating factors. Environ Toxicol 16:535–542. doi: 10.1002/tox.10014 CrossRefGoogle Scholar
  31. Pinheiro C, Azevedo J, Campos A, Loureiro S, Vasconcelos V (2013) Absence of negative allelopathic effects of cylindrospermopsin and microcystin-LR in selected marine and freshwater phytoplankton species. Hydrobiol 705:27–42. doi: 10.1007/s10750-012-1372-x CrossRefGoogle Scholar
  32. Prieto A, Campos A, Cameán A, Vasconcelos V (2011) Effects on growth and antioxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa). Ecotoxicol Environ Saf 74:1973–1980. doi: 10.1016/j.ecoenv.2011.06.009 CrossRefGoogle Scholar
  33. Sánchez-Viveros G, Ferrera-Cerrato R, Alarcón A (2011) Short-term effects of arsenate-induced toxicity on growth, chlorophyll and carotenoid contents, and total content of phenolic compounds of Azolla filiculoides. Water Air Soil Pollut 217:455–462. doi: 10.1007/s11270-010-0600-0 CrossRefGoogle Scholar
  34. Silva P, Vasconcelos V (2010) Allelopathic effect of Cylindrospermosis raciborskii extracts on the germination and growth of several plant species. Chem Ecol 26:263–271. doi: 10.1080/02757540.2010.495060 CrossRefGoogle Scholar
  35. Sood A, Uniyal PL, Prasana R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137. doi: 10.1007/s13280-011-0159-z CrossRefGoogle Scholar
  36. Tel-Or E, Forni C (2011) Phytorememdiation of hazardous toxic metals and organics by photosynthetic aquatic systems. Plant Biosyst 145:224–235. doi: 10.1080/11263504.2010.509944 CrossRefGoogle Scholar
  37. Vasas G, Gáspár A, Surányi G, Batta G, Gyémánt G, Hamvas M-M, Máthé C, Grigorszky I, Molnár E, Bolbély G (2002) Capillary electrophoretic assay and purification of cylindrospermospin, a cyanobacterial toxin from Aphanizomenon ovalisporum, by plant test (blue-green Sinapsis test). Anal Biochem 302:95–103. doi: 10.1006/abio.2001.5525 CrossRefGoogle Scholar
  38. Wagner GM (1997) Azolla: a review of its biology and utilization. Bot Rev 63:1–26. doi: 10.1007/BF02857915 CrossRefGoogle Scholar
  39. Welker M, Bickel H, Fastner J (2002) HPLC-PDA detection of cylindrospermopsin—opportunities and limits. Water Res 36:4659–4663CrossRefGoogle Scholar
  40. White SH, Duivenvoorden LJ, Fabbro LD (2005) Absence of free-cylindrospermopsin bioconcentration in water thyme (Hydrilla verticillata). Bull Environ Contam Toxicol 75:574–583. doi: 10.1007/s00128-005-0790-0 CrossRefGoogle Scholar
  41. Yin L, Huang J, Huang W, Li D, Wang G, Liu Y (2005) Microcystin-RR-induced accumulation of reactive oxygen species and alteration of antioxidant systems in tobacco BY-2 cells. Toxicon 46:507–512. doi: 10.1016/j.toxicon.2005.06.015 CrossRefGoogle Scholar
  42. Zar JH (1999) Biostatistical analysis. Prentice Hall International Inc, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Catarina Santos
    • 1
  • Joana Azevedo
    • 1
  • Alexandre Campos
    • 1
    • 3
  • Vitor Vasconcelos
    • 1
    • 2
  • Ana L. Pereira
    • 1
  1. 1.Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), BBE (Blue Biotechnology and Ecotoxicology)University of PortoPortoPortugal
  2. 2.Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
  3. 3.Department of Clinical and Experimental Medicine, Cell Biology, Faculty of Health ScienceLinköping UniversityLinköpingSweden

Personalised recommendations