, Volume 24, Issue 6, pp 1294–1304 | Cite as

Biosurfactant activity, heavy metal tolerance and characterization of Joostella strain A8 from the Mediterranean polychaete Megalomma claparedei (Gravier, 1906)

  • Carmen Rizzo
  • Luigi Michaud
  • Marco Graziano
  • Emilio De Domenico
  • Christoph Syldatk
  • Rudolf Hausmann
  • Angelina Lo Giudice


The effect of heavy metals on the activity of biosurfactants produced by Joostella strain A8 from the polychaete Megalomma claparedei was investigated. Biosurfactant activity was first improved by evaluating the influence of abiotic parameters. Higher E24 indices were achieved at 25 °C in mineral salt medium supplemented with 2 % glucose, 3 % sodium chloride (w/v) and 0.1 % ammonium chloride (w/v). Considerable surface tension reduction was never recorded. Heavy metal tolerance was preliminarily assayed by plate diffusion method resulting in the order of toxicity Cd > Cu > Zn. The activity of biosurfactants was then evaluated in the presence of heavy metals at different concentrations in liquid cultures that were incubated under optimal conditions for biosurfactant activity. The production of stable emulsions resulted generally higher in the presence of metals. These findings suggest that biosurfactant production could represent a bacterial adaptive strategy to defend cells from a stress condition derived from heavy metals in the bulk environment.


Biosurfactant activity Filter-feeding organisms Heavy metal tolerance 



The authors wish to thank Rossana Rando (Department of Environmental Science, Safety, Territory, of Food and Health, University of Messina) for fatty acid analysis, and Giuseppe Sabatino (Department of Earth Sciences and Physics, University of Messina) for SEM analysis.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Amoozadeh E, Malek E, Rashidinejad R, Nabavi S, Karbassi M, Ghayoumi R, Ghorbanzadeh-Zafarani G, Salehi H, Sures B (2014) Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environ Sci Pollut Res Int 21:2386–2395CrossRefGoogle Scholar
  2. Bodour AA, Guerrero-Barajas C, Jiorle BV, Malcomson ME, Paull AK, Somogyi A, Trinh LN, Bates RB, Maier RM (2004) Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11. Appl Environ Microbiol 70:114–120CrossRefGoogle Scholar
  3. Das P, Mukherjee S, Sen R (2009) Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour Technol 100:4887–4890CrossRefGoogle Scholar
  4. De Souza MJ, Nair S, Loka Bharathi PA, Chandramohan D (2006) Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters. Ecotoxicology 15:379–384CrossRefGoogle Scholar
  5. De Troch M, Cnudde C, Willems A, Moens T, Vanreusel A (2010) Bacterial colonization on fecal pellets of harpacticoid copepods and on their diatom food. Microb Ecol 60:581–591CrossRefGoogle Scholar
  6. Du Z, Zhang W, Xia H, Lü G, Chen G (2010) Isolation and diversity analysis of heterotrophic bacteria associated with sea anemones. Acta Oceanol Sin 29:62–69CrossRefGoogle Scholar
  7. Dupont S, Carre-Mlouka A, Domart-Coulon I, Vacelet J, Bourguet-Kondracki ML (2014) Exploring cultivable Bacteria from the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea. FEMS Microbiol Ecol 88:160–174CrossRefGoogle Scholar
  8. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123CrossRefGoogle Scholar
  9. Frąc M, Oszust C, Lipiec J (2012) Community level physiological profiles (CLPP), characterization and microbial activity of soil amended with dairy sewage sludge. Sensors 12:3253–3268CrossRefGoogle Scholar
  10. Gutierrez T, Rhodes G, Mishamandani S, Berry D, Whitman WB, Nichols PD, Semple KT, Aitken MD (2014) polycyclic aromatic hydrocarbon degradation of phytoplankton-associated Arenibacter spp. and description of Arenibacter algicola sp. nov., an aromatic hydrocarbon-degrading bacterium. Appl Environ Microbiol 80:618–628CrossRefGoogle Scholar
  11. Hameed A, Shahina M, Lin SY, Lai WL, Liu YC, Hsu H, Cheng C, Young CC (2014) Robertkochia marina gen. nov., sp. nov., of the family Flavobacteriaceae, isolated from surface seawater, and emended descriptions of the genera Joostella and Galbibacter. IJSEM 64:533–539Google Scholar
  12. Hara A, Radin NS (1978) Lipid extraction of tissues with a low-toxicity solvent. Anal Biochem 90:420–426CrossRefGoogle Scholar
  13. ISO 5509 (2000). Animal and vegetable fats and oils In: Preparation of Methyl Esters of Fatty AcidsGoogle Scholar
  14. Jackson SA, Kennedy J, Morrissey JP, O’Gara F, Dobson ADW (2012) Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microb Ecol 64:105–116CrossRefGoogle Scholar
  15. Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C (2012a) Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination 285:198–204CrossRefGoogle Scholar
  16. Khopade A, Ren B, Liu XY, Mahadik K, Zhang L, Kokare C (2012b) Production and characterization of biosurfactant from marine Streptomyces species B3. J Colloid Interface Sci 367:311–318CrossRefGoogle Scholar
  17. Kim BC, Lee KH, Kim MN, Jung MY, Chang YH, Lee J, Shin KS (2011) Joostella atrarenae sp. nov., a novel member of the Flavobacteriaceae originating from the black sea sand of Jeju Island. Curr Microbiol 62:606–611CrossRefGoogle Scholar
  18. Kiran SG, Anto T, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101:2389–2396CrossRefGoogle Scholar
  19. Lakshmipathy TD, Prasad ASA, Kannabiran K (2010) Production of biosurfactant and heavy metal resistance activity of Streptomyces sp. VITDDK3—a novel halo tolerant actinomycetes isolated from saltpan soil. Adv Biol Res 4:108–115Google Scholar
  20. Licata P, Trombetta D, Cristani M, Martino D, Naccari F (2004) Organochlorine compounds and heavy metals in the soft tissue of the mussel Mytilus galloprovincialis collected from Lake Faro (Sicily, Italy). Environ Int 30:805–810CrossRefGoogle Scholar
  21. Lo Giudice A, Caruso C, Mangano S, Bruni V, De Domenico M, Michaud L (2012) Marine bacterioplankton diversity and community composition in an Antarctic coastal environment. Microb Ecol 63:210–223CrossRefGoogle Scholar
  22. Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA (2009) An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B Biointerfaces 69:183–193CrossRefGoogle Scholar
  23. Maneerat S, Bamba T, Harada K, Kobayashi A, Yamada H, Kawai F (2006) A novel crude oil emulsifier excreted in the culture supernatant of a marine bacterium, Myroides sp. strain SM1 Appl. Microbiol Biotechnol 70:254–259CrossRefGoogle Scholar
  24. Quan ZX, Xiao YP, Roh SW, Nam YD, Chang HW, Shin KS, Rhee SK, Park YH, Bae JW (2008) Joostella marina gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the East Sea. Int J Syst Evol Microbiol 58:1388–1392CrossRefGoogle Scholar
  25. Rizzo C, Michaud L, Hörmann B, Gerçe B, Syldatk C, Hausmann R, De Domenico E, Lo Giudice A (2013) Bacteria associated with Sabellids (Polychaeta: Annelida) as a novel source of surface active compounds. Mar Pollut Bull 70:125–133CrossRefGoogle Scholar
  26. Rizzo C, Michaud L, Syldatk C, Hausmann R, De Domenico E, Lo Giudice A (2014) Influence of salinity and temperature on the activity of biosurfactants by polychaete-associated isolates. Environ Sci Pollut Res 21:2988–3004CrossRefGoogle Scholar
  27. Rocha CA, Pedregosa AM, Laborda F (2011) Biosurfactant-mediated biodegradation of straight and methyl-branched alkanes by Pseudomonas aeruginosa ATCC 55925. AMB Express 1:9CrossRefGoogle Scholar
  28. Satpute SK, Bhawsar BD, Dhakephalkar PK, Chopade BA (2008) Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Mar Sci 37:243–250Google Scholar
  29. Selvin J, Priya SS, Kiran GS, Thangavelu T, Bai NS (2009) Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol Res 164:352–363CrossRefGoogle Scholar
  30. Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146CrossRefGoogle Scholar
  31. Stackebrandt E, Chertkov O, Lapidus A, Nolan M, Lucas S, Han C, Cheng J-F, Tapia R, Goodwin LA, Bruce D, Pitluck S, Liolios K, Mavromatis K, Pagani J, Ivanova N, Mikhailova N, Huntemann M, Pati A, Chen A, Palaniappan K, Rohde M, Tindall BJ, Göker M, Woyke T, Detter JC, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk H-P, Kyrpides NC (2013) High-quality-draft genome sequence of the yellow-pigmented flavobacterium Joostella marina type strain (En5T). Stand Gen Sci 8:37–46CrossRefGoogle Scholar
  32. Tuleva B, Christova N, Jordanov B, Jordanov B, Nikolova-Damyanova B, Petrov P (2005) Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN. Z Naturforsch C 60(577):582Google Scholar
  33. Velmurugan N, Kalpana D, Cho JY, Lee GH, Park SH, Lee YS (2011) Phylogenetic analysis of culturable marine bacteria in sediments from South Korean Yellow Sea. Microbiology 80:261–272CrossRefGoogle Scholar
  34. Yang X, Li X, Zhou Y, Zheng W, Yu C, Zheng T (2014) Novel insights into the algicidal bacterium DH77-1 killing the toxic dinoflagellate Alexandrium tamarense. Sci Total Environ 482–483:116–124CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Carmen Rizzo
    • 1
  • Luigi Michaud
    • 1
  • Marco Graziano
    • 1
  • Emilio De Domenico
    • 1
  • Christoph Syldatk
    • 2
  • Rudolf Hausmann
    • 3
  • Angelina Lo Giudice
    • 1
    • 4
  1. 1.Department of Biological and Environmental SciencesUniversity of MessinaMessinaItaly
  2. 2.Institute of Process Engineering in Life Sciences, Section II: Technical BiologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Institute of Food Science and Biotechnology, Section Bioprocess EngineeringUniversity of HohenheimStuttgartGermany
  4. 4.Institute for the Coastal Marine EnvironmentNational Research Council (IAMC-CNR)MessinaItaly

Personalised recommendations