, Volume 24, Issue 5, pp 1124–1130 | Cite as

Acaricide-impaired functional predation response of the phytoseiid mite Neoseiulus baraki to the coconut mite Aceria guerreronis

  • D. B. Lima
  • J. W. S. Melo
  • M. G. C. GondimJr.
  • R. N. C. Guedes
  • J. E. M. Oliveira
  • A. Pallini


Acaricides may interfere with a myriad of interactions among arthropods, particularly predator–prey interactions. The coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae), and its phytoseiid predator, Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae), provide an opportunity to explore such interference because the former is a key coconut pest species that requires both predation and acaricide application for its management. The objective of the present study was to assess the effect of the acaricides abamectin, azadirachtin and fenpyroximate on the functional response of N. baraki to A. guerreronis densities. The following prey densities were tested: 5, 10, 20, 40 and 80 preys. The type of functional response and prey handling time (Th) were not altered by the acaricides. However, the attack rate (a′) was modified by abamectin and fenpyroximate, and the consumption peak was reduced by abamectin. All of the acaricides allowed for the maintenance of the predator in the field, but exposure to abamectin and fenpyroximate compromised prey consumption.


Acaricides Prey consumption Predator–prey interaction Attack rate 



We thank the following Brazilian agencies for their financial support: Pernambuco State Foundation for Research Aid (FACEPE), CAPES Foundation (Brazilian Ministry of Education), and the National Council of Scientific and Technological Development (CNPq).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This study did not involve any endangered or protected species. The specie studied is a species of predatory mite from a colony maintained in laboratory, where the experiments were performed and no specific permission was required.


  1. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267CrossRefGoogle Scholar
  2. Agrofit (2014) Sistema de agrotóxicos Fitossanitários do Ministério da Agricultura, Pecuária e Abastecimento,
  3. Ahmad M, Ossiewatsch HR, Basedow T (2003) Effects of neem treated aphids as food/hosts on their predators and parasitoids. J Appl Entomol 127:458–464CrossRefGoogle Scholar
  4. Aratchige NS, Sabelis MW, Lesna I (2007) Plant structural changes due to herbivory: do changes in Aceria-infested coconut fruits allow predatory mites to move under the perianth? Exp Appl Acarol 43:97–107CrossRefGoogle Scholar
  5. Cordeiro EMG, Corrêa AS, Venzon M, Guedes RNC (2010) Insecticide survival and behavioral avoidance in the lacewings Chrysoperla externa and Ceraeochrysa cubana. Chemosphere 81:1352–1357CrossRefGoogle Scholar
  6. Cordeiro EMG, De Moura ILT, Fadini MAM, Guedes RNC (2013) Beyond selectivity: are behavioral avoidance and hormesis likely causes of pyrethroid-induced outbreaks of the southern red mite Olygonychus ilicis? Chemosphere 93:1111–1115CrossRefGoogle Scholar
  7. Cranham JE, Helle W (1985) Pesticide resistance in Tetranychidae. In: Helle W, Sabelis MW (eds) Spider mites: their biology natural enemies and control. Elservier, Amsterdam, pp 405–422Google Scholar
  8. Croft BA (1990) Arthropod biological control agents and pesticides. Wiley, New YorkGoogle Scholar
  9. Cutler GC (2013) Insects, insecticides and hormesis: evidence and considerations for study. Dose-Response 11:154–177CrossRefGoogle Scholar
  10. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  11. Domingos CA, Melo JWS, Gondim MGC Jr, Moraes GJ, Hanna R, Lawson-balagbo LM, Schausberger P (2010) Diet-dependent life history, feeding preference and thermal requirements of the predatory mite Neoseiulus baraki (Acari: Phytoseiidae). Exp Appl Acarol 50:201–215CrossRefGoogle Scholar
  12. Guedes RNC, Cutler GC (2014) Insecticide-induced hormesis and arthropod pest management. Pest Manag Sci 70:690–697CrossRefGoogle Scholar
  13. Hamedi N, Fathipour Y, Saber M (2011) Sublethal effects of abamectin on the biological performance of the predatory mite, Phytoseius plumifer (Acari: Phytoseiidae). Exp Appl Acarol 53:29–40CrossRefGoogle Scholar
  14. Haq MA, Sumangala K, Ramani N (2002) Coconut mite invasion, injury and distribution. In: Fernando LCP, Moraes GJ, Wickramananda IR (eds) Proceedings of the International Workshop on Coconut Mite (Aceria guerreronis), Coconut Research Institute, Sri Lanka, pp 41–49 Google Scholar
  15. Holling CS (1959) Some characteristics of simples types of predation and parasitism. Can Entomol 9:385–396CrossRefGoogle Scholar
  16. Holling CS (1961) Principles of insect predation. Ann Rev Entomol 6:163–182CrossRefGoogle Scholar
  17. Hua RM, Cao HQ, Xu GW, Tang F, Li XD (2004) The integrative toxicity effects of beta-cypermethrin on Propylea japonica larvae and Aphis gossiypii adults. Acta Phytophysiol Sin 31:96–100Google Scholar
  18. Jepson PC (1989) The temporal and spatial dynamics pesticide side effects on non-target invertebrates. In: Jepson PC (ed) Pesticides and non-target invertebrates. Intercept, Wimborne, pp 95–128Google Scholar
  19. Juliano SA (1993) Nonlinear curve fitting: predation and functional response curves. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall, New York, pp 159–182Google Scholar
  20. Lawson-Balagbo LM, Gondim MGC Jr, Moraes GJ, Hanna R, Schausberger P (2008) Exploration of the acarine fauna on coconut palm in Brazil with emphasis on Aceria guerreronis (Acari: Eriophyidae) and its natural enemies. Bull Entomol Res 98:83–96CrossRefGoogle Scholar
  21. Lima DB, Melo JWS, Gondim MGC Jr, Moraes GJ (2012) Limitations of Neoseiulus baraki and Proctolaelaps bickleyi as control agents of Aceria guerreronis Keifer. Exp Appl Acarol 56:233–246CrossRefGoogle Scholar
  22. Lima DB, Melo JWS, Guedes RNC, Siqueira HAA, Pallini A, Gondim MGC Jr (2013a) Survival and behavioural response to acaricides of the coconut mite predator Neoseiulus baraki. Exp Appl Acarol 60:381–393CrossRefGoogle Scholar
  23. Lima DB, Monteiro VB, Guedes RNC, Siqueira HAA, Pallini A, Gondim MGC Jr (2013b) Acaricide toxicity and synergism of fenpyroximate to the coconut mite predator Neoseiulus baraki. Biocontrol 58:595–605CrossRefGoogle Scholar
  24. Lima DB, Melo JWS, Guedes NMP, Gontijo LM, Guedes RNC, Gondim MGC Jr (2015) Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki. Plosone. doi: 10.1371/journal.pone.0118343 Google Scholar
  25. Melo JWS, Lima DB, Pallini A, Oliveira JEM, Gondim MGC Jr (2011) Olfactory response of predatory mites to vegetative and reproductive parts of coconut palm infested by Aceria guerreronis. Exp Appl Acarol 55:191–202CrossRefGoogle Scholar
  26. Melo JWS, Domingos CA, Pallini A, Oliveira JEM, Gondim MGC Jr (2012) Removal of bunches or spikelets is not effective for the control of Aceria guerreronis. HortScience 47:1–5Google Scholar
  27. Monteiro VB, Lima DB, Gondim MGC Jr, Siqueira HAA (2012) Residual bioassay to assess the toxicity of acaricides against Aceria guerreronis (Acari: Eriophyidae) under laboratory conditions. J Econ Entomol 105:1419–1425CrossRefGoogle Scholar
  28. Moore D, Howard FW (1996) Coconuts. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam, pp 561–570CrossRefGoogle Scholar
  29. Nadimi A, Kamali K, Arabi M, Abdoli F (2009) Selectivity of three miticides to spider mite predator, Phytoseius plumifer (Acari: Phytoseiidae) under laboratory conditions. Agri Sci China 8:326–331CrossRefGoogle Scholar
  30. Negloh K, Hanna R, Schausberger P (2011) The coconut mite, Aceria guerreronis, in Benin and Tanzania: occurrence, damage and associated acarine fauna. Exp Appl Acarol 55:361–374CrossRefGoogle Scholar
  31. Omoto C, Alves EB, Ribeiro PC (2000) Detecção e monitoramento da resistência de Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) ao dicofol. An Soc Entomol Bras 29:757–764CrossRefGoogle Scholar
  32. Poletti M, Maia AHN, Omoto C (2007) Toxicity of neonicotinoid insecticides to Neoseiulus californicus and Phytoseiulus macropilis (Acari: Phytoseiidae) and their impact on functional response to Tetranychus urticae (Acari: Tetranychidae). Biol Control 40:30–36CrossRefGoogle Scholar
  33. Ramaraju K, Natarajan K, Babu PCS, Palnisamy S, Rabindra RJ (2002) Studies on coconut eriophyid mite, Aceria guerreronis Keifer in Tamil Nadu, Índia. In: Fernando LCP, Moraes GJ, Wickramananda IR (eds) Proceedings of the International Workshop on Coconut Mite (Aceria guerreronis). Coconut Research Institute, Sri Lanka, pp 13–31Google Scholar
  34. Rezác M, Pekár S, Stará J (2010) The negative effect of some selective insecticides on the functional responses of a potential biological control agent, the spider Philodromus cespitum. Biocontrol 55:503–510CrossRefGoogle Scholar
  35. SAS Institute (2002) SAS/STAT User’s guide, version 8.02, TS level 2 MO. SAS Institute Inc., Cary, North CarolinaGoogle Scholar
  36. Teodoro AV, Fadini MAM, Lemos WP, Guedes RNC (2009) Lethal and sub-lethal selectivity of fenbutatinoxide and sulfur to the predator Iphiseiodes zuluagai (Acari: Phytoseiidae) and its prey, Oligonychus ilicis (Acari: Tetranychidae), in Brazilian coffee plantations. Exp Appl Acarol 36:61–70CrossRefGoogle Scholar
  37. Torres JB, Ruberson JR (2004) Toxicity of thiamethoxam and imidacloprid to Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) nymphs associated to aphid and whitefly control in cotton. Neotrop Entomol 33:99–106CrossRefGoogle Scholar
  38. Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauwa W, Tirry L (2010) Acaricide resistance mechanisms in the two spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40:563–572CrossRefGoogle Scholar
  39. Wang XY, Shen ZR (2002) Effects of sublethal doses of insecticides on predation of multicolored asian ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinelliodae). Acta Ecol Sin 22:2278–2284Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • D. B. Lima
    • 1
    • 5
  • J. W. S. Melo
    • 2
  • M. G. C. GondimJr.
    • 1
  • R. N. C. Guedes
    • 3
  • J. E. M. Oliveira
    • 4
  • A. Pallini
    • 3
  1. 1.Departamento de Agronomia – EntomologiaUniversidade Federal Rural de PernambucoRecifeBrazil
  2. 2.Departamento de FitotecniaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Departamento de EntomologiaUniversidade Federal de ViçosaViçosaBrazil
  4. 4.Departamento de EntomologiaEmbrapa SemiáridoPetrolinaBrazil
  5. 5.Departamento de Agronomia (Fitossanidade)Universidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations