Advertisement

Ecotoxicology

, Volume 24, Issue 4, pp 938–948 | Cite as

Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae

  • Hudson C. Polonini
  • Humberto M. Brandão
  • Nádia R. B. Raposo
  • Marcos Antônio F. Brandão
  • Ludovic Mouton
  • Alain Couté
  • Claude Yéprémian
  • Yann Sivry
  • Roberta Brayner
Article

Abstract

Studies have been demonstrating that smaller particles can lead to unexpected and diverse ecotoxicological effects when compared to those caused by the bulk material. In this study, the chemical composition, size and shape, state of dispersion, and surface’s charge, area and physicochemistry of micro (BT MP) and nano barium titanate (BT NP) were determined. Green algae Chlorella vulgaris grown in Bold’s Basal (BB) medium or Seine River water (SRW) was used as biological indicator to assess their aquatic toxicology. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic activity were evaluated. Tetragonal BT (~170 nm, 3.24 m2 g−1 surface area) and cubic BT (~60 nm, 16.60 m2 g−1) particles were negative, poorly dispersed, and readily aggregated. BT has a statistically significant effect on C. vulgaris growth since the lower concentration tested (1 ppm), what seems to be mediated by induced oxidative stress caused by the particles (increased SOD activity and decreased photosynthetic efficiency and intracellular ATP content). The toxic effects were more pronounced when the algae was grown in SRW. Size does not seem to be an issue influencing the toxicity in BT particles toxicity since micro- and nano-particles produced significant effects on algae growth.

Keywords

Barium titanate Seine river water Ecotoxicology Characterization Nanotechnology 

Notes

Acknowledgments

H. Polonini thanks CAPES (04/CII-2008-Project 7, Network Brazil Nanobiotec) and Programa Ciência sem Fronteiras/CNPq (245781/2012-9) for the scholarships granted. All authors thank Institut Jacques Monod (Université Paris Diderot, Paris, France); FAPEMIG; prof. Dr. Marcone A. L. de Oliveira (experimental design); Sophie Nowak (XRD analysis); Jean-Yves Piquemal (BET analysis); and Philippe Decorse (XPS analysis).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10646_2015_1436_MOESM1_ESM.docx (955 kb)
Supplementary material 1 (DOCX 1221 kb)

References

  1. Ball JP, Mound BA, Nino JC, Allen JB (2014) Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications. J Biomed Mat Res Part A 102:2089–2095CrossRefGoogle Scholar
  2. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nanoletters 6:866–870CrossRefGoogle Scholar
  3. Brayner R, Dahoumane SA, Yéprémian C, Djediat C, Meyer M, Couté A, Fiévet F (2010) ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. Langmuir 26:6522–6528CrossRefGoogle Scholar
  4. Chae SR, Watanabe Y, Wiesner MR (2011) Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation. Water Res 45:308–314CrossRefGoogle Scholar
  5. Cheng WW, Lin ZQ, Wei BF, Zeng Q, Han B, Wei CX, Fan XJ, Hu CL, Liu LH, Huang JH, Yang X, Xi ZG (2011) Single-walled carbon nanotube induction of rat aortic endothelial cell apoptosis: reactive oxygen species are involved in the mitochondrial pathway. Int J Biochem Cell Biol 43:564–572CrossRefGoogle Scholar
  6. Chirino YI, Sánchez-Pérez Y, Osornio-Vargas AR, Morales-Bárcenas R, Gutiérrez-Ruíz MC, Segura-García Y, Rosas I, Pedraza-Chaverri J, García-Cuellar CM (2010) PM(10) impairs the antioxidant defense system and exacerbates oxidative stress driven cell death. Toxicol Lett 193:209–216CrossRefGoogle Scholar
  7. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Fragioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170CrossRefGoogle Scholar
  8. Ciofani G, Danti S, Moscato S, Albertazzi L, D’Alessandro D, Dinucci D, Chiellini F, Petrini M, Menciassi A (2010a) Preparation of stable dispersion of barium titanate nanoparticles: potential applications in biomedicine. Colloids Surf B 76:535–543CrossRefGoogle Scholar
  9. Ciofani G, Danti S, D’Alessandro D, Moscato S, Petrini M, Menciassi A (2010b) Barium titanate nanoparticles: highly cytocompatible dispersions in glycol-chitosan and doxorubicin complexes for cancer therapy. Nanoscale Res Lett 5:1093–1101CrossRefGoogle Scholar
  10. Cullen LG, Tilston EL, Mitchell GR, Collins CD, Shaw LJ (2011) Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82:1675–1682CrossRefGoogle Scholar
  11. den Doore de Jong JE, Roman WB (1965) Tolerance of Chlorella vulgaris for metallic and non-metallic ions. Antonie Van Leeuwenhoek 31:301–313CrossRefGoogle Scholar
  12. Di Giorgio ML, Di Bucchianico S, Ragnelli AM, Aimola P, Santucci S, Poma A (2011) Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res 722:20–31CrossRefGoogle Scholar
  13. Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70CrossRefGoogle Scholar
  14. Gogniat G, Thyssen M, Denis M, Pulgarin C, Dukan S (2006) The bactericidal effect of TiO2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity. FEMS Microbiol Lett 258:18–24CrossRefGoogle Scholar
  15. Handy RD, Kammer FVD, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicity and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314CrossRefGoogle Scholar
  16. Haniu H, Saito N, Matsuda Y, Tsukahara T, Maruyama K, Usui Y, Aoki K, Takanashi S, Kobayashi S, Nomura H, Okamoto M, Shimizu M, Kato H (2013) Culture medium type affects endocytosis of multi-walled carbon nanotubes in BEAS-2B cells and subsequent biological response. Toxicol In Vitro 27:1679–1785CrossRefGoogle Scholar
  17. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169CrossRefGoogle Scholar
  18. Hsieh CL, Grange R, Pua Y, Psaltis D (2010) Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes. Biomaterials 31:2272–2277CrossRefGoogle Scholar
  19. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res 11:77–89CrossRefGoogle Scholar
  20. Kopittke PM, Blamey F, McKenna BA, Wang P, Menzies NW (2011) Toxicity of metals to roots of cowpea in relation to their binding strength. Environ Toxicol Chem 30:1827–1833CrossRefGoogle Scholar
  21. Lamb DT, Matanitobua VP, Palanisami T, Megharaj M, Naidu R (2013) Bioavailability of barium to plants and invertebrates in soils contaminated by barite. Environ Sci Technol 47:4670–4676CrossRefGoogle Scholar
  22. Lee BI (1998) Electrokinetic behavior of barium titanate powders in water. J Kor Phys Soc 32:S1152–S1155Google Scholar
  23. López MCB, Fourlaris G, Rand B, Riley FL (1999) Characterization of barium titanate powders: barium carbonate identification. J Am Ceram Soc 7:1777–1786CrossRefGoogle Scholar
  24. López-Roldán R, Jubany I, Marti V, González S, Cortina JL (2013) Ecological screening indicators of stress and risk for the Llobregat river water. J Haz Mat 263:239–247CrossRefGoogle Scholar
  25. Monteiro FA, Nogueirol RC, Melo LCA, Artur AG, da Rocha F (2011) Effect of barium on growth and macronutrient nutrition in Tanzania guineagrass grown in nutrient solution. Comm Soil Sci Plant Anal 42:1510–1521CrossRefGoogle Scholar
  26. Montgomery DC (2012) Design and analysis of experiments, 8th edn. Wiley, New YorkGoogle Scholar
  27. Nowack B (2009) The behavior and effects of nanoparticles in the environment. Environ Poll 157:1063–1064CrossRefGoogle Scholar
  28. Pang C, Selck H, Misra SK, Berhanu D, Dybowska A, Valsami-Jones E, Forbes VE (2012) Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum: a comparison of Cu added in aqueous form or as nano- and micro-CuO particles. Aquat Toxicol 106–107:114–122CrossRefGoogle Scholar
  29. Pereira MM, Mouton L, Yéprémian C, Couté A, Lo J, Marconcini JM, Ladeira LO, Raposo NRB, Brandão HM, Brayner R (2014) Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris. J Nanobiotechnol 12:15CrossRefGoogle Scholar
  30. Planchon M, Ferrari R, Guyot F, Gélabert A, Menguy N, Chanéac C, Thill A, Benedetti MF, Spalla O (2013) Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloids Surf B 102:158–164CrossRefGoogle Scholar
  31. Polonini HC, de Oliveira MAL, Ferreira AO, Raposo NRB, Grossi LN, Brandão MAF (2011) Optimization of a new dissolution test for oxcarbazepine capsules using a mixed-level factorial design. J Braz Chem Soc 22:1263–1270CrossRefGoogle Scholar
  32. Rodea-Palomares I, Gonzalo S, Santiago-Morales J, Leganés F, García-Calvo E, Rosal R, Fernández-Piñas F (2012) An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquat Toxicol 15:133–143CrossRefGoogle Scholar
  33. Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, Baalousha M (2010) Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7:50–60CrossRefGoogle Scholar
  34. Sivry Y, Gelabert A, Cordier L, Ferrari R, Lazar H, Juillot F, Menguy N, Benedetti MF (2014) Behavior and fate of industrial zinc oxide nanoparticles in a carbonate-rich river water. Chemosphere 95:519–526CrossRefGoogle Scholar
  35. Strober W (2001) Trypan blue exclusion test of cell viability. Curr Prot Immunol 21:A.3B.1–A.3B.2Google Scholar
  36. Tiede K, Hassellov M, Breitbarth E, Chaudhry Q, Boxall ABA (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chrom A 1216:503–509CrossRefGoogle Scholar
  37. Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Biores Technol 101:5494–5500CrossRefGoogle Scholar
  38. Zupan G, Vitezić D, Mrsić J, Matesić D, Simonić A (1996) Effects of nimodipine, felodipine and amlodipine on electroconvulsive shock-induced amnesia in the rat. Eur J Pharmacol 310:103–106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hudson C. Polonini
    • 1
  • Humberto M. Brandão
    • 2
    • 3
  • Nádia R. B. Raposo
    • 1
  • Marcos Antônio F. Brandão
    • 1
  • Ludovic Mouton
    • 4
  • Alain Couté
    • 5
  • Claude Yéprémian
    • 5
  • Yann Sivry
    • 6
  • Roberta Brayner
    • 4
  1. 1.Núcleo de Pesquisa e Inovação em Ciências da Saúde (NUPICS)Universidade Federal de Juiz de ForaJuiz de ForaBrazil
  2. 2.Empresa Brasileira de Pesquisa Agropecuária (Embrapa Gado de Leite)Juiz de ForaBrazil
  3. 3.CiPharma, Escola de FarmáciaUniversidade Federal de Ouro PretoOuro PretoBrazil
  4. 4.Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS)Université Paris Diderot, Sorbonne Paris Cité, UMR 7086, CNRSParisFrance
  5. 5.Muséum National d’Histoire NaturelleParisFrance
  6. 6.Institute de Physique du Globe de Paris (IPGP)Université Paris Diderot, Sorbonne Paris CitéParisFrance

Personalised recommendations