, Volume 24, Issue 4, pp 915–925 | Cite as

Morphological alterations in the freshwater rotifer Brachionus calyciflorus Pallas 1766 (Rotifera: Monogononta) caused by vinclozolin chronic exposure

  • Jesús Alvarado-Flores
  • Roberto Rico-MartínezEmail author
  • Araceli Adabache-Ortíz
  • Marcelo Silva-Briano


Vinclozolin (VZ) is a dicarboximide fungicide widely used on fruits, vegetables and wines, effective against fungi plagues. In this study we characterized the effects of VZ using a 4-day reproductive chronic assay with the freshwater rotifer Brachionus calyciflorus. The assay included observations of several features of asexual and sexual reproduction. Our results indicate that VZ: (a) increased asexual and sexual reproduction, (b) caused severe abnormality in females and (c) these abnormalities were inherited by sexual and asexual reproduction. At 1.2 mg/L three abnormal females were found out of 457 total females (0.66 %). This low percentage is consistent and reproducible according to further analysis, where we increased the number of replicates and total females exposed to 1.2 mg/L of VZ, and found 18 abnormal females out of 2868 total females (0.63 % abnormality). Interestingly, abnormal females found at 5.6 mg/L VZ exposure, were able to show mating behavior. Our results suggest that VZ behaves as a strong endocrine disruptor whose effects show the characteristic inverted-U-shape exposure concentration response curve regarding the intrinsic population increase and the percentage of abnormalities as endpoints.


Endocrine disruption Abnormal rotifers Transgenerational effects Hormesis Fungicide Freshwater invertebrates 



J. A.-F. acknowledges the support of the CONACyT (Mexico´s National Council for Science and Technology) Scholarship Number 266358. Special thanks to Shantal Suárez-Mercado for helping us to obtain pictures and video recordings, and taking notes in all experiments. Thanks to Mario Alberto Arzate-Cárdenas for critical review of the manuscript.

Conflict of interest

The authors report no declarations of interest.

Supplementary material

Supplementary material 1 (AVI 845033 kb)


  1. Al-Mughrabi KI, Qrunfleh IM (2002) Pesticides residues in soil from the Jordan Valley, Jordan. Bull Environ Contam Toxicol 68:86–96CrossRefGoogle Scholar
  2. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptions and male fertility. Science 308:1466–1469CrossRefGoogle Scholar
  3. Anway MD, Memon MA, Uzumcu M, Skinner MK (2006) Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl 27:868–879CrossRefGoogle Scholar
  4. Bayley M, Junge M, Baatrup E (2002) Exposure of juvenile guppies to three antiandrogens causes demasculinization and a reduced sperm count in adult males. Aquat Toxicol 56:227–239CrossRefGoogle Scholar
  5. Dahms HU, Hagiwara A, Lee JS (2011) Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquat Toxicol 101:1–12CrossRefGoogle Scholar
  6. Den Berg Van, Der Linden Van (1994) Agricultural pesticides and groundwater. In: Zoller U (ed) Groundwater contamination and control. USA Marcel Dekker, New York, pp 293–313Google Scholar
  7. Elmoor-Loureiro LMA (2004) Morphological abnormalities in the cladoceran Ilyocryptus spinifer (Apipucos Reservoir, Pernanmbuco State, Brazil). Braz J Bio 64:53–58CrossRefGoogle Scholar
  8. El-Shahat MF, Al-Nawayseh KM, Jiries AG, Alnasir FM (2003) Pesticides and heavy metal distribution in southern Dead Sea basin. Bull Environ Contam Toxicol 71:1230–1238Google Scholar
  9. Elzeinova F, Novakova V, Buckiova D, Kubatova A, Peknicova J (2008) Effect of low dose of vinclozolin on reproductive tract development and sperm parameters in CD1 outbred mice. Reprod Toxicol 26:231–238CrossRefGoogle Scholar
  10. Evans TJ (2011) Endocrine disruptors. In: Gupta RC (ed) Reproductive and developmental toxicology. Academic Press, San Diego, pp 873–891CrossRefGoogle Scholar
  11. Gilbert JJ (2004) Females from resting eggs and parthenogenetic eggs in the rotifer Brachionus calyciflorus: lipid droplets, starvation resistance and reproduction. Freshw Biol 49:1505–1515CrossRefGoogle Scholar
  12. Gilbert JJ, Walsh EJ (2005) Brachionus calyciflorus is a species complex: mating behavior and genetic differentiation among four geographically isolated strains. Hydrobiologia 546:257–265CrossRefGoogle Scholar
  13. Gómez GA (1996) Ecología genética y sistemas de reconocimiento de pareja en poblaciones simpátricas de rotíferos. Tesis doctorales. ETD Micropublicaciones, Universitat de Valéncia Google Scholar
  14. Graham JD, Clarke CL (1997) Physiological action of progesterone in target tissue. Endocr Rev 18:502–519Google Scholar
  15. Guerrero-Bosagna C, Covert TR, Haque MdM, Settles M, Nilsson EE, Anway MD, Skinner MK (2012) Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod Toxicol 34:694–707CrossRefGoogle Scholar
  16. Haeba MH, Hilscherová K, Mazurová E, Bláha L (2008) Selected endocrine disrupting compounds (vinclozolin, flutamide, ketoconazole and dicofol): effects on survival, occurrence of males, growth, molting and reproduction of Daphnia magna. Environ Sci Pollut Res Int 15:222–227CrossRefGoogle Scholar
  17. Kang IH, Kim HS, Shin JH, Kim TS, Moon HJ, Kim IY, Choi KS, Kil KS, Park YI, Dong MS, Han SY (2004) Comparison of anti-androgenic activity of flutamide, vinclozolin, procymidone, linuron, and p, p′-DDE in rodent 10-day Hershberger assay. Toxicology 199:145–159CrossRefGoogle Scholar
  18. Kiparissis Y, Metcalfe TL, Balch GC, Metcalfe CD (2003) Effects of the antiandrogens, vinclozolin and cyproterone acetate on gonadal development in the Japanese medaka (Oryzias latipes). Aquat Toxicol 63:391–403CrossRefGoogle Scholar
  19. Köhler H-R, Triebskorn R (2013) Wildlife ecotoxicology of pesticide: can we track effects to the population level and beyond? Science 341:759–765CrossRefGoogle Scholar
  20. Lemos MFL, Van Gestel CAM, Soares AMVM (2010a) Reproductive toxicity of the endocrine disruptor vinclozolin and bisphenol A in the terrestrial isopod Porcellio scaber (Latreille, 1804). Chemosphere 78:907–913CrossRefGoogle Scholar
  21. Lemos MFL, Van Gestel CAM, Soares AMVM (2010b) Developmental toxicity of the endocrine disruptors bisphenol A and vinclozolin in a terrestrial isopod. Arch Environ Contam Toxicol 59:274–281CrossRefGoogle Scholar
  22. Lv LL, Snell TW, Yang JX, Li SG, Zhu WG (2010) Effect of fenitrothion on life history parameters of the rotifer Brachionus calyciflorus. J Freshw Ecol 25:589–598CrossRefGoogle Scholar
  23. Martinović-Weigelt D, Rong-Ling W, Villeneuve DL, Bencic DC, Lazorchak J, Ankley GT (2011) Gene expression profiling of the androgen receptor antagonists flutamide and vinclozolin in zebrafish (Danio rerio) gonads. Aquat Toxicol 101:447–458CrossRefGoogle Scholar
  24. Molina-Molina JM, Hillenweck A, Jouanin I, Zalko D, Cravedi J-P, Fernández M-F, Pillon A, Nicolas J-C, Olea N, Balaguer P (2006) Steroid receptor profiling of vinclozolin and its primary metabolites. Toxicol Appl Pharma 216:44–54CrossRefGoogle Scholar
  25. Nakamura A, Takanobu H, Tamura I, Yamamuro M, Iguchi T, Tatarazako N (2014) Verification of responses of Japanese medaka (Oryzias latipes) to anti-androgens, vinclozolin and flutamide, in short-term assays. J Appl Toxicol 34:545–553CrossRefGoogle Scholar
  26. Navarro S, Barba A, Oliva J, Navarro G, Pardo F (1999) Evolution of residual levels of six pesticides during elaboration of red wines. Effect of wine-making procedures in their disappearance. J Agric Food Chem 47:264–270CrossRefGoogle Scholar
  27. Nichols HW (1973) Growth media-freshwater. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, CambridgeGoogle Scholar
  28. Oskam G, Van Genderen J, Hopman R, Noij THM, Noordsij A, Piuker LM (1993) A general view of the problem, with special references to the Dutch situation. Water Supply 11:1–17Google Scholar
  29. Otha T, Tokushima S, Shiga Y, Hanazato T, Yamagata H (1998) An assay system for detecting environmental toxicants with cultured cladoceran eggs in vitro: malformations induced by ethylenethiourea. Environ Res A 77:43–48CrossRefGoogle Scholar
  30. Papadopoulou-Marukidou E (1991) Postharvest-applied agrochemicals and their residues in fresh fruits and vegetables. J Assoc Off Anal Chem 74:745–765Google Scholar
  31. Perez-Legaspi IA, Rico-Martínez R (1998) Effect of temperature and food concentration in two species of littoral rotifers. Hydrobiologia 387(388):341–348CrossRefGoogle Scholar
  32. Preston BL, Snell TW, Robertson TL, Dingmann BJ (2000) Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine disruptors. Environ Toxicol Chem 19:2923–2928CrossRefGoogle Scholar
  33. Rico-Martínez R, Snell TW (1997) Mating behavior in eight rotifer species: using cross-mating test to study species boundaries. Hydrobiologia 356:165–173CrossRefGoogle Scholar
  34. Schneider S, Kaufmann W, Biesen R, Ravenzwaay B (2008) Vinclozolin—the lack of a transgenerational effect after oral maternal exposure during organogenesis. Reprod Toxicol 25:352–360CrossRefGoogle Scholar
  35. Shurin JB, Dodson SI (1997) Sublethal toxic effects of cyanobacteria and nonylphenol on environmental sex determination and development in Daphnia. Environ Toxicol Chem 16:1269–1276CrossRefGoogle Scholar
  36. Siebers J, Gottschild D, Nolting HG (1994) Pesticides in precipitation in northern Germany. Chemosphere 28:1559–1570CrossRefGoogle Scholar
  37. Skinner MK, Manikkam M, Guerrero-Bosagna C (2011) Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol 31:337–343CrossRefGoogle Scholar
  38. Snell TW (2011) A review of the molecular mechanisms of monogonont rotifer reproduction. Hydrobiologia 662:89–97CrossRefGoogle Scholar
  39. Snell TW, DesRosiers NJD (2008) Effect of progesterone on sexual reproduction of Brachionus manjavacas (Rotifera). J Exp Marine Biol Ecol 363:104–109CrossRefGoogle Scholar
  40. Snell TW, Moffat BD (1992) A 2-d life cycle test with the rotifer Brachionus calyciflorus. Environ Toxicol Chem 11:1249–1257CrossRefGoogle Scholar
  41. Spencer EY (1964) Guide to the chemical used in crop protection. J Chem Soc 4:228–229Google Scholar
  42. Stebbing EP, La Clair JJ (1982) Hormesis—the stimulation of growth by low levels of inhibitors. Sci Total Environ 22:213–234CrossRefGoogle Scholar
  43. Stout EP, La Clair JJ, Snell TW, Shearer TL, Kubanek J (2010) Conservation of progesterone hormone function in invertebrate reproduction. Proc Natl Acad Sci USA 107:11859–11864CrossRefGoogle Scholar
  44. Thoma K, Nicholson BC (1989) Pesticide losses in runoff from horticultural catchment in South Australia and their relevance to stream and reservoir water quality. Environ Technol Lett 10:117–129CrossRefGoogle Scholar
  45. Tillmann M, Schulte-Oehlmann U, Duft M, Markert B, Oehlmann J (2001) Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part III: cyproterone acetate and vinclozolin as antiandrogens. Ecotoxicology 10:373–388CrossRefGoogle Scholar
  46. US EPA (2003) Vinclozolin: notice of filing a pesticide petition to establish a tolerance for a certain pesticide chemical in or on food, Federal Register. Accesed 29 Jan 2015
  47. USEPA (2000) Reregistration eligibility decision for vinclozolin. Prevention, pesticides and toxic substances. Accessed 29 Jan 2015
  48. USEPA (2001) National toxicology program´s report of the endocrine disruptors low dose. National Institute of Environmental Health Sciences, NIH, National Toxicology Program. Accessed 29 Jan 2015
  49. Uzumcu M, Suzuki H, Skinner MK (2004) Effect of the anti-androgenic endocrine and function. Reprod Toxicol 18:765–774CrossRefGoogle Scholar
  50. Vandegehuchte MB, Lemière F, Vanhaecke L, Vanden Berghe W, Janssen CR (2010) Direct and transgenerational impact on Daphnia magna of chemical with a known effect on DNA methylation. Comp Biochem Physiol C 151:218–285Google Scholar
  51. Wallace RL, Snell TW, Ricci C, Nogrady T (2006) Rotifera: biology, ecology and systematics. In: Dumont HJF (ed) Guides to the identification of the microinvertebrates of the continental waters of the world. Kenobi Productions, Backhuys Publishers, LeidenGoogle Scholar
  52. Watermann BT, Gnass K, Kolodzey H, Thomsen AE (2011) Laboratory tests with androgenic and antiandrogenic pesticides—comparative studies on endocrine modulation in the reproductive system of invertebrates and vertebrates. intechopen. Accessed 29 Jan 2015
  53. Welshons WV, Nagel SC, Thayer KA, Judy BM, Vom Saal FS (1999) Low-dose bioactivity of xenoestrogens in animals: fetal exposure to low doses of methoxychlor and other xenoestrogens increases adult prostate size in mice. Toxicol Ind Health 15:12–25CrossRefGoogle Scholar
  54. Yang L, Jinmiao Z, Li W, Li Z, Wang Z (2011) Vinclozolin affects the interrenal system of the rare minnow (Gobiocypris rarus). Aquat Toxicol 104:153–159CrossRefGoogle Scholar
  55. Zavala-Aguirre JL, Torres-Bugarin O, Zamora-Perez AL (2007) Aquatic ecotoxicology approaches in Western Mexico. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1503–1511CrossRefGoogle Scholar
  56. Zou E (2003) Current status of environmental endocrine disruption in selected aquatic invertebrates. Acta Zool Sin 49:551–565Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jesús Alvarado-Flores
    • 1
    • 3
  • Roberto Rico-Martínez
    • 1
    Email author
  • Araceli Adabache-Ortíz
    • 2
  • Marcelo Silva-Briano
    • 2
  1. 1.Departamento de Química, Centro de Ciencias BásicasUniversidad Autónoma de AguascalientesAguascalientesMexico
  2. 2.Departamento de Biología, Centro de Ciencias BásicasUniversidad Autónoma de AguascalientesAguascalientesMexico
  3. 3.Consejo Nacional de Ciencia y Tecnología/Unidad de Ciencias del Agua, Centro de Investigación Científica de YucatánCancúnMexico

Personalised recommendations