, Volume 24, Issue 3, pp 657–663 | Cite as

Sensitivity of animals to chemical compounds links to metabolic rate

  • Jan BaasEmail author
  • Sebastiaan A. L. M. Kooijman


Ecotoxicological studies have shown considerable variation in species sensitivity for chemical compounds, but general patterns in sensitivity are still not known. A better understanding of this sensitivity is important in the context of environmental risk assessment but also in a more general ecological and evolutionary one. We investigated the metabolic rate or more precise the specific somatic maintenance (expressed in J cm−3 d−1, at a standardised body temperature of 20 °C) on the sensitivity of a species to chemical poisoning. The sensitivity of a species was expressed in terms of its threshold concentration for survival, the no effect concentrations (NEC, in µmol/L). Somatic maintenance data were based on the ‘add-my-pet’ database hosted by the VU University of Amsterdam. NECs were derived from the US-EPA ECOTOX database. We focussed on four pesticides; two that need a metabolic activation, Chlorpyrifos and Malathion, and two without metabolic activation, carbofuran and carbaryl. All four pesticides showed a similar response: a strong negative correlation between the specific somatic maintenance and the NEC. We discuss possible explanations, deviations and ecological implications.


Species sensitivity Biological traits Specific somatic maintenance No effect concentration Pesticides 



The study was supported by the European Union Marie Curie Actions - Research Fellowship Programme 2012 (FP7-PEOPLE-2012-IEF), project acronym BIOME, contract no. 328931.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10646_2014_1413_MOESM1_ESM.pdf (355 kb)
Supplementary material 1 (PDF 354 kb)


  1. Baas J, Jager T, Kooijman B (2010) Understanding toxicity as processes in time. Sci Total Environ 408:3735–3739. doi: 10.1016/j.scitotenv.2009.10.066 CrossRefGoogle Scholar
  2. Baird DJ (1993) Can toxicity testing contribute to ecotoxicology? Funct Ecol 7:510–511. doi: 10.2307/2390042 Google Scholar
  3. Baird DJ, van den Brink PJ (2007) Using biological traits to predict species sensitivity to toxic substances. Ecotoxicol Environ Saf 67:296–301. doi: 10.1016/j.ecoenv.2006.07.001 CrossRefGoogle Scholar
  4. ECHA (2008) Guidance on information requirements and chemical safety assessment. Chapter R.10: characterisation of dose [concentration]-response for environment. European Chemicals AgencyGoogle Scholar
  5. ECOTOX User Guide: ECOTOXicology Database System. Version 4.0. http:/ (2013) US EPA
  6. IPCS (1986a) Environmental health criteria 63, organophosphorous insecticides: a general introduction. International programme on chemical safety, GenevaGoogle Scholar
  7. IPCS (1986b) Environmental health criteria 64, carbamate pesticides: a general introduction. International programme on chemical safety, GenevaGoogle Scholar
  8. Ippolito A, Todeschini R, Vighi M (2012) Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits. Ecotoxicology 21:336–352. doi: 10.1007/s10646-011-0795-x CrossRefGoogle Scholar
  9. Jager T (2011) Some good reasons to ban ECx and related concepts in ecotoxicology. Environ Sci Technol 45:8180–8181. doi: 10.1021/es2030559 CrossRefGoogle Scholar
  10. Jager T, Kooijman SALM (2009) A biology-based approach for quantitative structure-activity relationships (QSARs) in ecotoxicity. Ecotoxicology 18:187–196CrossRefGoogle Scholar
  11. Jager T, Heugens EHW, Kooijman SALM (2006) Making sense of ecotoxicological test results: towards application of process-based models. Ecotoxicology 15:305–314CrossRefGoogle Scholar
  12. Jager T, Posthuma L, de Zwart D, van de Meent D (2007) Novel view on predicting acute toxicity: decomposing toxicity data in species vulnerability and chemical potency. Ecotoxicol Environ Saf 67:311–322CrossRefGoogle Scholar
  13. Jager T, Albert C, Preuss TG, Ashauer R (2011) General unified threshold model of survival—a toxicokinetic–toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529–2540CrossRefGoogle Scholar
  14. Kazemi M, Tahmasbi AM, Valizadeh R, Naserian AA, Soni A (2012) Organophosphate pesticides: a general review. Agri Sci Res J 2:512–522Google Scholar
  15. Kefford BJ, Palmer CG, Jooste S, Warne MSJ, Nugegoda D (2005) What is meant by “95 % of species”? An Argument for the Inclusion of Rapid Tolerance Testing. Hum Ecol Risk Assess 11:1024–1046Google Scholar
  16. Kooijman SALM (1981) Parametric analyses of mortality rates in bioassays. Water Res 15:107–119. doi: 10.1016/0043-1354(81)90190-1 CrossRefGoogle Scholar
  17. Kooijman SALM (1987) A safety factor for LC50 values allowing for differences is sensitivity among species. Water Res 21:269–276CrossRefGoogle Scholar
  18. Kooijman SALM (2010) Dynamic energy budget theory for metabolic organisation. Cambridge University Press, CambridgeGoogle Scholar
  19. Kooijman SALM (2013) Waste to hurry: dynamic energy budgets explain the need of wasting to fully exploit blooming resources. Oikos 122:348–357. doi: 10.1111/j.1600-0706.2012.00098.x CrossRefGoogle Scholar
  20. Kooijman SALM (2014) Metabolic acceleration in animal ontogeny: an evolutionary perspective. J Sea Res. doi: 10.1016/j.seares.2014.06.005 Google Scholar
  21. Kooijman SALM, Bedaux JJM (1996) Some statistical properties of estimates of no-effect concentrations. Water Res 30:1724–1728CrossRefGoogle Scholar
  22. Kooijman SALM, Lika K (2014) Resource allocation to reproduction in animals. Biol Rev. doi: 10.1111/brv.12082 Google Scholar
  23. Kooijman SALM, Baas J, Bontje D, Broerse M, Jager T, Van Gestel CAM, Van Hattum B (2007) Scaling relationships based on partition coefficients and body sizes have similarities and interactions. SAR QSAR Environ Res 18:315–330CrossRefGoogle Scholar
  24. Liess M, von der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24:954–965. doi: 10.1897/03-652.1 CrossRefGoogle Scholar
  25. Lika K, Kooijman SALM (2011) The comparative topology of energy allocation in budget models. J Sea Res 66:381–391. doi: 10.1016/j.seares.2011.10.005 CrossRefGoogle Scholar
  26. Lika K et al (2011a) The “covariation method” for estimating the parameters of the standard dynamic energy budget model I: philosophy and approach. J Sea Res 66:270–277. doi: 10.1016/j.seares.2011.07.010 CrossRefGoogle Scholar
  27. Lika K, Kearney MR, Kooijman SALM (2011b) The “covariation method” for estimating the parameters of the standard dynamic energy budget model II: properties and preliminary patterns. J Sea Res 66:278–288. doi: 10.1016/j.seares.2011.09.004 CrossRefGoogle Scholar
  28. Lika K, Augustine S, Pecquerie L, Kooijman SALM (2014) The bijection from data to parameter space with the standard DEB model quantifies the supply–demand spectrum. J Theor Biol 354:35–47. doi: 10.1016/j.jtbi.2014.03.025 CrossRefGoogle Scholar
  29. Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005) Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379–388. doi: 10.1897/04-025R.1 CrossRefGoogle Scholar
  30. Newman MC, Ownby DR, Mezin L CA, Powell DC, Christensen TRL, Lerberg SB, Anderson B-A (2000) Applying species-sensitivity distributions in ecological risk assessment: assumptions of distribution type and sufficient numbers of species. Environ Toxicol Chem 19:508–515Google Scholar
  31. OECD (1998) Report of the OECD workshop on statistical analysis of aquatic toxicity data, vol 10. Organisation for Economic Cooperation and Development, ParisGoogle Scholar
  32. OECD (2006) Current approaches in the statistical analysis of ecotoxicity data: a guidance to application, vol 54. Organisation for Economic Cooperation and Development, ParisGoogle Scholar
  33. Posthuma L, Suter GW, Traas TP (2002) Species sensitivity distributions in ecotoxicology. CRC press, Boca RatonGoogle Scholar
  34. Raimondo S, Jackson CR, Barron MG (2010) Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species. Environ Sci Technol 44:7711–7716CrossRefGoogle Scholar
  35. Rubach MN, Baird DJ, Van den Brink PJ (2010) A new method for ranking mode-specific sensitivity of freshwater arthropods to insecticides and its relationship to biological traits. Environ Toxicol Chem 29:476–487. doi: 10.1002/etc.55 CrossRefGoogle Scholar
  36. Slooff W, Canton JH, Hermens JLM (1983) Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. I. (Sub)acute toxicity tests. Aquat Toxicol 4:113–128CrossRefGoogle Scholar
  37. Thurston RV, Gilfoil TA, Meyn EL, Zajdel RK, Aoki T, Veith GD (1985) Comparative toxicity of ten organic chemicals to ten common aquatic species. Water Res 19:1145–1155CrossRefGoogle Scholar
  38. Vaal M, van der Wal JT, Hoekstra J, Hermens J (1997) Variation in the sensitivity of aquatic species in relation to the classification of environmental pollutants. Chemosphere 35:1311–1327. doi: 10.1016/S0045-6535(97)00167-7 CrossRefGoogle Scholar
  39. van den Brink P (2008) Ecological risk assessment: from book-keeping to chemical stress ecology. Environ Sci Technol 42:8999–9004. doi: 10.1021/es801991c CrossRefGoogle Scholar
  40. Wheeler JR, Grista EPM, Leunga KMY, Morritta D, Crane M (2002) Species sensitivity distributions: data and model choice. Marine Pollut Bull 45:192–202CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre Ecology and HydrologyMacLean Building Benson LaneWallingfordUK
  2. 2.Department Theoretical BiologyVU UniversityAmsterdamThe Netherlands

Personalised recommendations