, Volume 24, Issue 3, pp 616–625 | Cite as

The impact of management strategies in apple orchards on the structural and functional diversity of epigeal spiders

  • Christophe Mazzia
  • Alain Pasquet
  • Gaël Caro
  • Jodie Thénard
  • Jean-François Cornic
  • Mickaël Hedde
  • Yvan CapowiezEmail author


Apple orchards are agro-ecosystems managed with high levels of inputs and especially pesticides. Epigeal spider communities were sampled in three seasons using pitfall traps in 19 apple orchards with four different management strategies (abandoned, under organic, Integrated Pest Management or conventional protection) and thus significantly different pesticide usage. The abundance and diversity of the spider communities was the highest in abandoned orchards. Higher diversity and evenness values were the only difference in spider communities from the organic orchards compared to the other commercial orchards. The analysis of five ecological traits (proportion of aeronauts, type of diet, overwintering stages, body size and maternal care), however, clearly showed differences in the spiders from the organic orchards. The spider species in the other commercial orchards were smaller and have higher dispersal abilities. Seven bioindicator species were identified in abandoned orchards, two species in organic ones (only Lycosidae) and one species in conventional orchards (Linyphiidae).


Pesticides Organic Bioindicator species Ecological traits Dispersion 



The authors warmly thanked the producers and owners for allowing them to sample spiders in their orchards. This study is dedicated to the memory of P. R., one of the producers, who committed suicide in 2012. The authors also wish to thank our colleagues participating in the BETSI project (funded by the French Foundation for Biodiversity) for valuable discussions on trait-based approaches.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Bahlai CA, Xue Y, Mc Creary CM, Schaafsma AW, Hallett RH (2010) Choosing organic pesticides over synthetic pesticides may not mitigate environmental risks in soybeans. PLoS One. doi: 10.1371/journal.pone.0011250 Google Scholar
  2. Bajwa WI, Aliniazee MT (2001) Spider fauna in apple ecosystem of western Oregon and its field susceptibility to chemical and microbial insecticides. J Econ Entomol 94:68–75CrossRefGoogle Scholar
  3. Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114CrossRefGoogle Scholar
  4. Bengtsson J, Ahnstrom J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269CrossRefGoogle Scholar
  5. Bonte D, Baert L, Lens L, Maelfait JP (2004) Effects of aerial dispersal, habitat specialisation and landscape structure on spider distribution across fragmented grey dunes. Ecography 27:343–349CrossRefGoogle Scholar
  6. Bonte D, Lens L, Maelfait JP (2006) Sand dynamics in coastal dune landscapes constrain diversity and life-history characteristics of spiders. J Appl Ecol 43:735–747CrossRefGoogle Scholar
  7. Cardenas M, Ruano F, Garcia P, Pascual F, Campos M (2006) Impact of agricultural management on spider populations in the canopy of olive tress. Biol Control 38:188–195CrossRefGoogle Scholar
  8. Chevenet F, Doledec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. Freshw Biol 31:295–309CrossRefGoogle Scholar
  9. Codron JM, Habib R, Jacquet F, Sauphanor B (2003) Bilan et perspectives environnementales de la filière arboriculture fruitière. In: Dron D (ed) Agriculture, territoire, environnement dans les politiques européennes. Dossiers de l’Environnement de l’INRA 23, pp 31–67Google Scholar
  10. Cristofoli S, Mahy G, Kekenbosh R, Lambeets K (2010) Spider communities as evaluation tools for wet heatland restoration. Ecol Indic 10:773–780CrossRefGoogle Scholar
  11. Croft BA (1982) Arthropod resistance to insecticides: a key to pest control failures and successes in North American apple orchards. Entomol Exp Appl 31:88–110CrossRefGoogle Scholar
  12. Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466:109–123CrossRefGoogle Scholar
  13. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  14. Feber RE, Bell J, Johnston PJ, Firbank LG, Macdonald DW (1998) The effects of organic farming on surface-active spider (Aranea) assemblages in wheat in southern England, UK. J Arachnol 26:190–202Google Scholar
  15. Field JG, Clarke KR, Warwick RM (1982) A practical strategy for analysing multispecies distribution patterns. Mar Ecol Prog Ser 8:37–52CrossRefGoogle Scholar
  16. Foelix RF (2011) Biology of spiders. Oxford University Press, New YorkGoogle Scholar
  17. Glück E, Ingrisch S (1990) The effect of biodynamics and conventional agriculture management on Erigoninae and Lycosidae spiders. J Appl Entomol 110:136–148CrossRefGoogle Scholar
  18. Greenstone MH, Morgan CE, Hultsh A-L (1987) Ballooning spiders in Missouri, USA, and New South Wales, Australia: family and mass distributions. J Arachnol 15:163–170Google Scholar
  19. Halley JM, Thomas CFG, Jepson PC (1996) A model for the spatial dynamics of linyphiid spiders in farmland. J Appl Ecol 33:471–492CrossRefGoogle Scholar
  20. Hedde M, Pey B, Auclerc A, Capowiez Y, Cluzeau D, Cortet J et al (2012a) BETSI, a complete framework for studying soil invertebrate functional traits. XVI ICSZ—International Colloquium on Soil Zoology, CoimbraGoogle Scholar
  21. Hedde M, van Oort F, Lamy I (2012b) Functional traits of soil invertebrates as indicators for exposure to soil disturbance. Environ Pollut 164:59–65CrossRefGoogle Scholar
  22. Hedde M, van Oort F, Renouf E, Thénard J, Lamy I (2013) Dynamics of soil fauna after plantation of perennial energy crops on polluted soils. Appl Soil Ecol 66:29–39CrossRefGoogle Scholar
  23. Herrmann JD, Bailey D, Hofer G, Herzog F, Schmidt-Entling MH (2010) Spiders associated with meadow and tree canopies of orchards respond differently to habitat fragmentation. Landsc Ecol 25:1375–1384CrossRefGoogle Scholar
  24. Hole DG, Perkins AJ, Wilson JD, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130CrossRefGoogle Scholar
  25. Jørgensen LN (1999) Denmark’s action plans for pesticides: status and role of research. Nord Jordbrugsforsk 81:201–202Google Scholar
  26. Laliberté E, Shipley B (2011) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-11Google Scholar
  27. Lambeets K, Hendrickx K, Vanacker S, Van Looy K, Maelfait JP, Bonte D (2008) Assemblage structure and conservation value of spiders and carabid beetles from restored lowland river banks. Biodivers Conserv 17:3133–3148CrossRefGoogle Scholar
  28. Lambeets K, Vandegehuchte ML, Maelfait JP, Bonte D (2009) Integrating environmental conditions and functional life-history traits for riparian arthropods conservation planning. Biol Conserv 142:625–637CrossRefGoogle Scholar
  29. Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10CrossRefGoogle Scholar
  30. Langlands PR, Brennan KEC, Frameneau VW, Main BY (2011) Predicting the post-fire responses of animal assemblages: testing a trait-based approach using spider. J Anim Ecol 80:558–568CrossRefGoogle Scholar
  31. Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quetier F, Thebault A, Bonis A (2008) Assessing functional diversity in the field—methodology matters! Funct Ecol 22:134–147Google Scholar
  32. Lemke A, Poehling H-M (2002) Sown weed strips in cereal fields: overwintering site and “source” habitat for Oedothorax apicatus (Blackwall) and Erigone atra (Blackwall) (Araneae: Erigonidae). Agric Ecosyst Environ 90:67–80CrossRefGoogle Scholar
  33. LePeru B (2006) Catalogue et repartition des Araignées de France. Rev Arachnol 16:1–468Google Scholar
  34. LeViol I, Julliard R, Kerbiriou C, Redon L, Carnino N, Machon N, Porcher E (2008) Plant and spider communities benefit differently from the presence of planted hedgerows in highway verges. Biol Conserv 141:1581–1590CrossRefGoogle Scholar
  35. Marc P, Canard A, Ysnel F (1999) Spiders (Araneae) useful for pest limitation and bioindication. Agric Ecosyst Environ 74:229–273CrossRefGoogle Scholar
  36. Marko V, Keresztes B, Fountain MT, Cross JV (2009) Prey availability, pesticides and the abundance of orchard spider communities. Biol Control 48:115–124CrossRefGoogle Scholar
  37. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecol 82:290–297CrossRefGoogle Scholar
  38. Minarro M, Espadaler X, Melero VX, Suarez-Alvarez V (2009) Organic versus conventional management in an apple orchard: effects of fertilization and tree-row management on ground-dwelling predaceous arthropods. Agric For Entomol 11:133–142CrossRefGoogle Scholar
  39. Nentwig W (2003) Management of biodiversity in agroecosystems. Basic Appl Ecol 4:105–106CrossRefGoogle Scholar
  40. Nentwig W (2013) Ecophysiology of spiders. Springer-Verlag, BerlinCrossRefGoogle Scholar
  41. Nyffeler M, Sunderland KD (2003) Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of european and US studies. Agric Ecosyst Environ 95:579–612CrossRefGoogle Scholar
  42. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 1.17-7Google Scholar
  43. Park YC, Joo JS, Kim JP (2007) Diversity of spider communities in a pesticide-treated pine (Pinus densiflora) forest. J Ecol Field Biol 30:179–186CrossRefGoogle Scholar
  44. Pekar S (2012) Spiders in the pesticide world: an ecotoxicological review. Pest Manag Sci 68:1438–1446CrossRefGoogle Scholar
  45. Pekar S, Koucourek F (2004) Spider (Araneae) in the biological and integrated pest management of apple in Czech Republic. J Appl Entomol 128:561–566CrossRefGoogle Scholar
  46. Pfiffner L, Luka H (2003) Effects of low-input farming systems on carabids and epigeal spiders—a paired farm approach. Basic Appl Ecol 4:117–127CrossRefGoogle Scholar
  47. Pinheiro J, Bates D, DebRoy S, Sarkar D and the R Development Core Team (2011) Nlme: linear and nonlinear mixed effects models. R package version 3.1-113Google Scholar
  48. Platnick NI (2012) The world spider catalog, version 13.0. American Museum of Natural History. doi: 10.5531/db.iz.0001
  49. Prieto-Benitez S, Mendez M (2011) Effect of land management on the abundance and richness of spiders (Aranea): a meta-analysis. Biol Conserv 144:683–691CrossRefGoogle Scholar
  50. Ribera I, Doledec S, Downie IS, Foster GN (2001) Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82:1112–1129CrossRefGoogle Scholar
  51. Roberts MJ (1996) Spiders of Britain and Northern Europe. Harper Collins, LondonGoogle Scholar
  52. Santos SAP, Pereira JA, Torres LM, Nogueira AJA (2007) Evaluation of the effects on canopy arthropods of two agricultural management systems to control pests in olive groves from the north-east of Portugal. Chemosphere 67:131–139CrossRefGoogle Scholar
  53. Sauphanor B, Dirwimmer C, Boutin S, Chaussabel AL, Dupont N, Fauriel J, Gallia V, Lambert N, Navarro E, Parisi L, Plenet D, Ricaud V, Sagnes JL, Sauvaitre D, Simon S, Speich P, Zavagli F (2009) Analyse comparative de différents systèmes en arboriculture fruitière. In: INRA (Ed), Ecophyto R&D: vers des systèmes de culture économes en produits phytosanitaires. Rapport d’expertise, Tome IV, INRA, ParisGoogle Scholar
  54. Sauphanor B, Severac G, Maugin S, Toubon J-F, Capowiez Y (2012) Exclusion netting may alter reproduction of the codling moth (Cydia pomonella) and prevent associated fruit damage to apple orchards. Entomol Exp Appl 145:134–142CrossRefGoogle Scholar
  55. Schmidt MH, Thies C, Nentwig W, Tscharntke T (2008) Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35:155–166Google Scholar
  56. Topping CJ, Sunderland KD (1994) A spatial population-dynamics model for Leptyphantes-tenuis (Araneae, Linyphiidae) with some simulations of the spatial and temporal effects of farming opérations and land-use. Agric Ecosyst Environ 48:203–217CrossRefGoogle Scholar
  57. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional. Oikos 116:882–892CrossRefGoogle Scholar
  58. Wilson EO (1975) The adequacy of body size as a niche différence. Am Nat 109:769–784CrossRefGoogle Scholar
  59. Wise D (1995) Spiders in ecological webs. Cambridge University Press, CambridgeGoogle Scholar
  60. Wisniewska J, Prokopy RJ (1997) Pesticide effect on faunal composition, abundance, and body length of spiders (Araneae) in apple orchards. Environ Entomol 26:763–776CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christophe Mazzia
    • 1
  • Alain Pasquet
    • 2
  • Gaël Caro
    • 3
  • Jodie Thénard
    • 3
  • Jean-François Cornic
    • 4
  • Mickaël Hedde
    • 3
  • Yvan Capowiez
    • 5
    Email author
  1. 1.UMR 7263 CNRS-IRD, IMBEUniversité d’Avignon et des Pays de VaucluseAvignon Cedex 09France
  2. 2.CNRS, UR AFPA, Faculté des Sciences et TechnologiesUniversity of LorraineVandoeuvre les Nancy CedexFrance
  3. 3.INRA, UR 251 Pessac, Centre de Versailles-GrignonVersailles CedexFrance
  4. 4.CaumontFrance
  5. 5.INRA, UR 1115 Plantes et Systèmes de cultures HorticolesAvignon Cedex 09France

Personalised recommendations