Advertisement

Ecotoxicology

, Volume 23, Issue 9, pp 1744–1754 | Cite as

Comparison of the sensitivity of seven marine and freshwater bioassays as regards antidepressant toxicity assessment

  • Laetitia MinguezEmail author
  • Carole Di Poi
  • Emilie Farcy
  • Céline Ballandonne
  • Amira Benchouala
  • Clément Bojic
  • Carole Cossu-Leguille
  • Katherine Costil
  • Antoine Serpentini
  • Jean-Marc Lebel
  • Marie-Pierre Halm-Lemeille
Article

Abstract

The hazards linked to pharmaceutical residues like antidepressants are currently a major concern of ecotoxicology because they may have adverse effects on non-target aquatic organisms. Our study assesses the ecotoxicity of three antidepressants (fluoxetine, sertraline and clomipramine) using a battery of marine and freshwater species representing different trophic levels, and compares the bioassay sensitivity levels. We selected the following bioassays: the algal growth inhibition test (Skeletonema marinoi and Pseudokirchneriella subcapitata), the microcrustacean immobilization test (Artemia salina and Daphnia magna), development and adult survival tests on Hydra attenuata, embryotoxicity and metamorphosis tests on Crassostrea gigas, and in vitro assays on primary cultures of Haliotis tuberculata hemocytes. The results showed high inter-species variability in EC50-values ranging from 43 to 15,600 µg/L for fluoxetine, from 67 to 4,400 µg/L for sertraline, and from 4.70 µg/L to more than 100,000 µg/L for clomipramine. Algae (S. marinoi and P. subcapitata) and the embryo–larval stages of the oyster C. gigas were the most sensitive taxa. This raises an issue due to their ecological and/or economic importance. The marine crustacean A. salina was the least sensitive species. This difference in sensitivity between bioassays highlights the importance of using a test battery.

Keywords

Antidepressant Test battery Marine ecotoxicity Freshwater ecotoxicity Sensitivity comparison 

Notes

Acknowledgments

This work is a contribution to the Pharm@Ecotox Project funded by the French National Research Agency (ANR, fr: Agence Nationale de la Recherche). The authors thank the technical staff of the Centre de Recherche en Environnement Côtier (Luc-sur-Mer, Basse-Normandie) for their assistance in animal care, and the staff of the SATMAR (Société ATlantique de MARiculture) hatchery (Barfleur, France) for providing pediveliger larvae. We are grateful to Annie Buchwalter for English language editing and we wish to thank the anonymous reviewers for their helpful comments.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. AFNOR (2009) Bio indicateur de la toxicité potentielle de milieux aqueux–Détermination de la toxicité potentielle d’échantillons aqueux sur le développement embryo–larvaire de bivalve. XP T90-382Google Scholar
  2. Almeida JR, Gravato C, Guilhermino L (2012) Challenges in assessing the toxic effects of polycyclic aromatic hydrocarbons to marine organisms: a case study on the acute toxicity of pyrene to the European seabass (Dicentrarchus labrax L.). Chemosphere 86(9):926–937CrossRefGoogle Scholar
  3. Amar E, Balsan D (2004) Les ventes d’antidépresseurs entre 1980 et 2001. Études et résultats, Direction de la Recherche, des Etudes, de l’Evaluation et des Statistiques (DREES) 285:1–8Google Scholar
  4. Ankley GT, Brooks BW, Huggett DB, Sumpter JP (2007) Repeating history: pharmaceuticals in the environment. Environ Sci Technol 41:8211–8217CrossRefGoogle Scholar
  5. ANSM (2012) Analyse des ventes de médicaments en France en 2011. Agence Nationale de Sécurité du Médicament et des Produits de Santé, 1–21Google Scholar
  6. Auffret M, Oubella R (1994) Cytometric parameters of bivalve molluscs: effect of environmental factors. In: Stolen JS, Fletcher TC (eds) Modulators of fish immune responses. Models for environmental toxicology, biomarkers, immunostimulators, vol 1. SOS Publication, Fair HavenGoogle Scholar
  7. Baker SM, Mann R (1994) Feeding ability during settlement and metamorphosis in the oyster Crassostrea virginica (Gmelin, 1791) and the effects of hypoxia on post-settlement ingestion rates. J Exp Mar Biol Ecol 181:239–253CrossRefGoogle Scholar
  8. Bao VWW, Leung KMY, Lui GCS, Lam MHW (2013) Acute and chronic toxicities of irgarol alone and in combination with copper to the marine copepod Tigriopus japonicus. Chemosphere 90:1140–1148CrossRefGoogle Scholar
  9. Beauregard T, Ridal J (2000) Evaluation of six simple bioassays for the determination of drinking water quality-Canadian results. Environ Toxicol 15:304–311CrossRefGoogle Scholar
  10. Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93:2116–2123CrossRefGoogle Scholar
  11. Blaise C, Vasseur P (2005) Algal microplate toxicity test. In: Férard J-F, Blaise C (eds) Small-scale freshwater toxicity investigations. Springer, Berlin, pp 137–179CrossRefGoogle Scholar
  12. Brausch JM, Connors KA, Brooks BW, Rand GM (2012) Human pharmaceuticals in the aquatic environment : a review of recent toxicological studies and considerations for toxicity testing. Rev Environ Contam Toxicol 218:1–99Google Scholar
  13. Brooks BW, Foran CM, Richards SM, Weston J, Turner PK, Stanley JK, Solomon KR, Slattery M, La Point TW (2003a) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142:169–183CrossRefGoogle Scholar
  14. Brooks BW, Turner PK, Stanley JK, Weston JJ, Glidewell EA, Foran CM, Slattery M, La Point TW, Huggett DB (2003b) Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52:135–142CrossRefGoogle Scholar
  15. Caveney S, Cladman W, Verellen L, Donly C (2006) Ancestry of neuronal monoamine transporters in the metazoa. J Exp Biol 209(24):4858–4868CrossRefGoogle Scholar
  16. Chapman PM, Long ER (1983) The use of bioassays as part of a comprehensive approach to marine pollution assessment. Mar Pollut Bull 14:81–84CrossRefGoogle Scholar
  17. Chapman PM, Cardwell RS, Chapman PF (1996) A warning: NOECs are inappropriate for regulatory use. Environ Toxicol Chem 15:77–79CrossRefGoogle Scholar
  18. Christensen AM, Faaborg-Andersen S, Ingerslev F, Baun A (2007) Mixture and single-substance toxicity of selective serotonin reuptake inhibitors toward algae and crustaceans. Environ Toxicol Chem 26:85–91CrossRefGoogle Scholar
  19. Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194CrossRefGoogle Scholar
  20. Coles JA, Farley SR, Pipe RK (1995) Alteration of the immune response of the common marine mussel Mytilus edulis resulting from exposure to cadmium. Dis Aquat Org 22:59–65CrossRefGoogle Scholar
  21. Commission of the European Communities (1996) Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances. Part II: environmental risk assessment. Office for official publications of the European Communities, LuxembourgGoogle Scholar
  22. Coon SL, Bonar DB (1987) Pharmacological evidence that alpha 1-adrenoceptors mediate metamorphosis of the Pacific oyster, Crassostrea gigas. Neuroscience 23:1169–1174CrossRefGoogle Scholar
  23. Daughton CG, Ternes TA (1999) Pharmaceutical and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938CrossRefGoogle Scholar
  24. De Lange HJ, Noordoven W, Murk AJ, Lürling M, Peeters ETHM (2006) Behavioural responses of Gammarus pulex (crustacea, amphipoda) to low concentrations of pharmaceuticals. Aquat Toxicol 78:209–216CrossRefGoogle Scholar
  25. Di Poi C, Darmaillacq A-S, Dickel L, Boulouard M, Bellanger C (2013a) Effects of perinatal exposure to waterborne fluoxetine on memory processing in the cuttlefish Sepia officinalis. Aquat Toxicol 132–133:84–91CrossRefGoogle Scholar
  26. Di Poi C, Evariste L, Serpentini A, Halm-Lemeille M-P, Lebel J-M, Costil K (2013b) Toxicity of five antidepressant drugs on the embryo–larval development in the Pacific oyster, Crassostrea gigas. Environ Sci Pollut Res. doi: 10.1007/s11356-013-2211-y Google Scholar
  27. Dodson SI, Hanazato T (1995) Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems. Environ Health Perspect 103(Suppl. 4):7–11CrossRefGoogle Scholar
  28. Domart-Coulon I, Auzoux-Bordenave S, Doumenc D, Khalanski M (2000) Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell cultures. Toxicol In Vitro 14:245–251CrossRefGoogle Scholar
  29. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquatic Toxicol 76:122–159CrossRefGoogle Scholar
  30. Gasquet I, Nègre-Pagès L, Fourrier A, Nachbaur G, El-Hasnaoui A, Kovess V, Lépine J-P (2005) Usage des psychotropes et troubles psychiatriques en France: résultats de l’étude épidémiologique ESEMeD/MHEDEA 2000/(ESEMeD) en population générale. Encéphale 31:195–206CrossRefGoogle Scholar
  31. Gaume B, Bourgougnon N, Auzoux-Bordenave S, Roig B, Le Bot B, Bedoux G (2012) In vitro effects of triclosan and methyl-triclosan on the marine gastropod Haliotis tuberculata. Comp Biochem Physiol C 156:87–94Google Scholar
  32. Godhe A, McQuoid R, Karunasagar I, Karunasagar I, Rehnstam-Holm AS (2006) Comparison of three common molecular tools for distinguishing among geographically separated clones of the diatom Skeletonema marinoi Sarno et Zingone (Bacillariophyceae). J Phycol 42:280–291CrossRefGoogle Scholar
  33. Gorski J, Nugegoda D (2006) Toxicity of trace metals to juvenile abalone, Haliotis rubra following short-term exposure. B Environ Contam Tox 77:732–740CrossRefGoogle Scholar
  34. Hardege JD, Duncan J, Ram JL (1997) Tricyclic antidepressants suppress spawning and fertilization in the zebra mussel, Dreissena polymorpha. Comp Biochem Physiol C 118:59–64CrossRefGoogle Scholar
  35. His E, Beiras R, Silhouette C (1997) Research note a simplification the bivalve embryogenesis and larval development bioassay method for water quality assessment. Water Res 31:351–355CrossRefGoogle Scholar
  36. His E, Heyvang I, Geffard O et al (1999) A comparison between oyster (Crassostrea gigas) and sea urchin (Paracentrotus lividus) larval bioassays for toxicological studies. Water Res 33:1706–1718CrossRefGoogle Scholar
  37. Johnson DJ, Sanderson H, Brain RA, Wilson CJ, Solomon KR (2007) Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae. Ecotoxicol Environ Saf 67:128–139CrossRefGoogle Scholar
  38. Kümmerer K (2001) Introduction: pharmaceuticals in the environment. In: Kümmerer K (ed) Pharmaceuticals in the environment: source, fate, effects and risks. Springer, Berlin, pp 1–8CrossRefGoogle Scholar
  39. Lebel J-M, Giard W, Favrel P, Boucaud-Camou E (1996) Effects of different vertebrate growth factors on primary cultures of hemocytes from the gastropod mollusc, Haliotis tuberculata. Biol Cell 86:67–72CrossRefGoogle Scholar
  40. Li H, Helm PA, Metcalfe CD (2010) Sampling in the Great Lakes for pharmaceuticals, personal care products, and endocrine-disrupting substances using the passive polar organic chemical integrative sampler. Environ Toxicol Chem 4:751–762CrossRefGoogle Scholar
  41. Lin M-C, Liao C-M (1999) Zn(II) accumulation in the soft tissue and shell of abalone Haliotis diversicolor supertexta via the alga Gracilaria tenuistipitata var. liui and the ambient water. Aquaculture 178:89–101CrossRefGoogle Scholar
  42. Mai H, Cachot J, Brune J et al (2012) Embryotoxic and genotoxic effects of heavy metals and pesticides on early life stages of Pacific oyster (Crassostrea gigas). Mar Poll Bull 64:2663–2670CrossRefGoogle Scholar
  43. Marchand M, Tissier C (2005) Analyse du risque chimique en milieu marin. L’approche méthodologique européenne. Ed Ifremer, p 126Google Scholar
  44. Minagh E, Hernan R, Kathleen OR, Lyng FM, Davoren M (2009) Aquatic ecotoxicity of the selective serotonin reuptake inhibitor sertraline hydrochloride in a battery of freshwater test species. Ecotox Environ Safe 72:434–440CrossRefGoogle Scholar
  45. Miner BE, De Meester L, Pfrender ME, Lampert W, Hairston NG Jr (2012) Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc R Soc B. doi: 10.1098/rspb.2011.2404 Google Scholar
  46. Minguez L, Halm-Lemeille M-P, Costil K, Bureau R, Lebel J-M, Serpentini A (2014a) Assessment of cytotoxic and immunomodulatory properties of four antidepressants on primary cultures of abalone hemocytes (Haliotis tuberculata). Aquat Toxicol 153:3–11CrossRefGoogle Scholar
  47. Minguez L, Farcy E, Ballandonne C, Lepailleur A, Serpentini A, Lebel J-M, Bureau R, Halm-Lemeille M-P (2014b) Acute toxicity of 8 antidepressants: what are their modes of action? Chemosphere 108:314–319CrossRefGoogle Scholar
  48. Mottier A, Kientz-Bouchart V, Serpentini A, Lebel JM, Jha AN, Costil K (2013) Effects of glyphosate-based herbicides on embryo–larval development and metamorphosis in the Pacific oyster, Crassostrea gigas. Aquat Toxicol 128–129:67–78CrossRefGoogle Scholar
  49. Mottin E, Caplat C, Mahaut M-L, Costil K, Barillier D, Lebel J-M, Serpentini A (2010) Effect of in vitro exposure to zinc on immunological parameters of haemocytes from the marine gastropod Haliotis tuberculata. Fish Shellfish Immunol 29:846–853CrossRefGoogle Scholar
  50. Munoz-Bellido JL, Munoz-Criado S, Garcia-Rodriguez JA (2000) Antimicrobial activity of psychotropic drugs selective serotonin reuptake inhibitors. Int J Antimicrob Agents 14:177–180CrossRefGoogle Scholar
  51. NF EN ISO 10253 (2006) Qualité de l’eau–Essai d’inhibition de la croissance des algues marines avec Skeletonema costatum et Phaedactylum tricornutum Google Scholar
  52. NF EN ISO 6341 (1996) Qualité de l’eau–Détermination de l’inhibition de la mobilité de Daphnia magna Straus (cladocera, crustacea)–Essai de toxicité aigüeGoogle Scholar
  53. NF EN ISO 8692 (2012) Qualité de l’eau–Essai d’inhibition de la croissance des algues d’eau douce avec des algues vertes unicellulairesGoogle Scholar
  54. OECD guidelines for the testing of chemicals N° 201 (2002) freshwater alga and cyanobacteria, growth inhibition testGoogle Scholar
  55. Olié J, Omari FEL, Spadone C, Lépine J (2002) Résultats d’une enquête sur l’usage des antidépresseurs en population générale française. Encéphale 28:411–417Google Scholar
  56. Pachura-Bouchet S, Blaise C, Vasseur P (2006) Toxicity of nonylphenol on the cnidarian Hydra attenuata and environmental risk assessment. Environ Toxicol 21(4 Special Issue):388–394CrossRefGoogle Scholar
  57. Painter MM, Buerkley MA, Julius ML, Vajda AM, Norris DO, Barber LB, Furlong ET, Schultz MM, Schoenfuss HL (2009) Antidepressants at environmentally relavant concentrations affect predator avoidance behavior of larval fathead minnows (Pimephales promelas). Environ Tox Chem 28:2677–2684CrossRefGoogle Scholar
  58. Pascoe D, Karntanut W, Müller CT (2003) Do pharmaceuticals affect freshwater invertebrates? A study with the cnidarian Hydra vulgaris. Chemosphere 51:521–528CrossRefGoogle Scholar
  59. Pélissolo A, Boyer P, Lépine JP, Bisserbe JC (1996) Epidemiology of the use of anxiolytic and hypnotic drugs in France and in the world. Encephale 22:187–196Google Scholar
  60. Persoone G, Wells PG (1987) Artemia in aquatic toxicology: a review. In: Sorgellos P, Bengtson DA, Decleir W, Jaspers E (eds) Artemia research and its applications. Morphology, genetics, strain characterization, toxicology, vol I. Universa Press, WetterenGoogle Scholar
  61. Pipe RK, Coles JA (1995) Environmental contaminants influencing immune-function in marine bivalve molluscs. Fish Shellfish Immunol 5:581–595CrossRefGoogle Scholar
  62. Sánchez-Fortún S, Sanz F, Santa-María A, Ros JM, De Vicente ML, Encinas MT, Vinagre E, Brahona MV (1997) Acute sensitivity of three age classes of Artemia salina larvae to seven chlorinated solvents. Bull Environ Contam Toxicol 59:445–451CrossRefGoogle Scholar
  63. Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95CrossRefGoogle Scholar
  64. Sverdrup LE, Fürst CS, Weideborg M, Vik EA, Stenersen J (2002) Relative sensitivity of one freshwater and two marine acute toxicity tests as determined by testing 30 offshore E & P chemicals. Chemosphere 46:311–318CrossRefGoogle Scholar
  65. Tatarazako N, Oda S (2007) The water flea Daphnia magna (crustacea, cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology 16:197–203CrossRefGoogle Scholar
  66. R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, ISBN 3-900051-07-0. http://www.R-project.org/
  67. Togola A, Budzinski H (2008) Multu-residue analysis of pharmaceutical compounds in aqueous samples. J Chromatogr A 1177:150–158CrossRefGoogle Scholar
  68. Trottier S, Blaise C, Kusui T, Johnson EM (1997) Acute toxicity assessment of aqueous samples using a microplate-based Hydra attenuata assay. Environ Toxicol Water 71:112–265Google Scholar
  69. US EPA (2005) Species sentivity distribution generator V1. Freely available from The United States environmental protection agency, http://www.epa.gov/caddis/da_software_ssdmacro.html
  70. Vindimian E (2012) MSExcel Macro Regtox 7.06 freely available from Eric Vindimian. IRSTEA, France. http://www.normalesup.org/~vindimian.fr_index.html (Accessed March 2012)
  71. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Statist Assoc 58:236–244CrossRefGoogle Scholar
  72. Warne M St J, van Dam R (2008) NOEC and LOEC data should no longer be generated or used. Australas J Ecotoxicol 14:1–5Google Scholar
  73. Webb SF (2001) A data-based perspective on the environmental risk assessment of human pharmaceuticals I-collation of available ecotoxicity data. In: Kümmerer K (ed) Pharmaceuticals in the environment: Source, fate, effects and risks. Springer, Berlin, pp 317–343Google Scholar
  74. Wheeler JR, Grist EPM, Leung KMY, Morritt D, Crane M (2002) Species sensitivity distributions: data and model choice. Mar Pollut Bull 45:192–202CrossRefGoogle Scholar
  75. Wilby OK (1988) The Hydra regeneration assay. Proceedings, workshop organized by association Française de teratology, Royaumont, France, 3 Juin, 108–124Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laetitia Minguez
    • 1
    • 2
    Email author
  • Carole Di Poi
    • 1
  • Emilie Farcy
    • 1
    • 2
    • 4
  • Céline Ballandonne
    • 2
  • Amira Benchouala
    • 3
  • Clément Bojic
    • 3
  • Carole Cossu-Leguille
    • 3
  • Katherine Costil
    • 1
  • Antoine Serpentini
    • 1
  • Jean-Marc Lebel
    • 1
  • Marie-Pierre Halm-Lemeille
    • 2
  1. 1.UMR BOREA (Biologie des ORganismes et Ecosystèmes Aquatiques), CNRS-7208/MNHN/UPMC/IRD-207/UCBNCaen CedexFrance
  2. 2.CERMN, UFR des Sciences Pharmaceutiques, UPRES EA4258-FR CNRS INC3M–SF 4206 ICOREUniversité de Caen Basse-NormandieCaen CedexFrance
  3. 3.CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC)Université de LorraineMetzFrance
  4. 4.Laboratoire Ecologie des Systèmes Marins Côtiers (ECOSYM)Université de Montpellier 2, UMR 5119MontpellierFrance

Personalised recommendations