Ecotoxicology

, Volume 23, Issue 5, pp 929–938 | Cite as

Bioaccumulation and speciation of selenium in fish and insects collected from a mountaintop removal coal mining-impacted stream in West Virginia

  • M. C. Arnold
  • T. Ty Lindberg
  • Y. T. Liu
  • K. A. Porter
  • H. Hsu-Kim
  • D. E. Hinton
  • R. T. Di Giulio
Article

Abstract

A major contaminant of concern for mountaintop removal/valley fill (MTR/VF) coal mining is selenium (Se), an essential micronutrient that can be toxic to fish. Creek chubs (Semotilus atromaculatus), green sunfish (Lepomis cyanellus), and composite insect samples were collected in March-July, 2011–2013 at two sites within the Mud River, West Virginia. One site (MR7) receives MTR/VF coal mining effluent, while the reference site (LFMR) does not. MR7 water had significantly higher concentrations of soluble Se (p < 0.01) and conductivity (p < 0.005) compared to LFMR. MR7 whole insects contained significantly higher concentrations of Se compared to LFMR insects (p < 0.001). MR7 creek chubs had significantly higher Se in fillets, liver, and ovary tissues compared to LFMR samples (p < 0.0001, p < 0.0001, and p < 0.02, respectively). MR7 green sunfish fillets contained significantly higher Se (p < 0.0001). Histological examination showed LFMR creek chub gills contained a typical amount of parasitic infestations; however MR7 gills contained minimal to no visible parasites. X-ray absorption spectroscopic analyses revealed that MR7 whole insects and creek chub tissues primarily contained organic Se and selenite. These two species of Mud River fish were shown to specifically accumulate Se differently in tissues compartments. Tissue-specific concentrations of Se may be useful in determining potential reproductive consequences of Se exposure in wild fish populations.

Keywords

Selenium Bioaccumulation Fish Speciation 

Supplementary material

10646_2014_1236_MOESM1_ESM.pdf (318 kb)
Supplementary material 1 (PDF 318 kb)

References

  1. Adams WJ, Toll JE, Brix KV, Tear LM, DeForest DK (2000) Site-specific approach for setting water quality criteria for selenium: Differences between lotic and lentic systems. Proceedings of the Twenty-Fourth Annual British Columbia Mine Reclamation Symposium:231–240Google Scholar
  2. Barber WE, Minckley WL (1971) Summer foods of cyprinid fish Semotilus-atromaculatus. Trans Am Fish Soc 100 (2):283–289. doi:10.1577/1548-8659(1971)100<283:Sfotcf>2.0.Co;2 Google Scholar
  3. Beld J, Woycechowsky KJ, Hilvert D (2007) Selenoglutathione: efficient oxidative protein folding by a diselenide. Biochemistry 46(18):5382–5390. doi:10.1021/bi700124p CrossRefGoogle Scholar
  4. Bryant G, McPhilliamy S (2002) A survey of the water quality of streams in the primary region of mountaintop/valley fill coal mining. United States Environmental Protection Agency, WheelingGoogle Scholar
  5. Conley JM, Funk DH, Buchwalter DB (2009) Selenium bioaccumulation and maternal transfer in the mayfly Centroptilum triangulifer in a life-cycle, periphyton-biofilm trophic assay. Environ Sci Technol 43(20):7952–7957. doi:10.1021/es9016377 CrossRefGoogle Scholar
  6. Conley JM, Funk DH, Hesterberg DH, Hsu LC, Kan J, Liu YT, Buchwalter DB (2013) Bioconcentration and biotransformation of selenite versus selenate exposed periphyton and subsequent toxicity to the mayfly Centroptilum triangulifer. Environ Sci Technol 47(14):7965–7973. doi:10.1021/es400643x CrossRefGoogle Scholar
  7. Eisler R (2000) Handbook of chemical risk assessment: health hazards to humans, plants, and animals. Lewis Publishers, Boca RatonCrossRefGoogle Scholar
  8. Fox J (1999) Mountaintop removal in West Virginia: an environmental sacrifice zone. Org Environ 12(2):163–183CrossRefGoogle Scholar
  9. Hamilton SJ (2003) Review of residue-based selenium toxicity thresholds for freshwater fish. Ecotoxicol Environ Saf 56(2):201–210. doi:10.1016/S0147-6513(02)00091-X CrossRefGoogle Scholar
  10. Hamilton SJ, Buhl KJ, Faerber NL, Wiedmeyer RH, Bullard FA (1990) Toxicity of organic selenium in the diet to chinook salmon. Environ Toxicol Chem 9(3):347–358. doi:10.1002/etc.5620090310 Google Scholar
  11. Hardy RW, Oram LL, Moller G (2010) Effects of dietary selenomethionine on cutthroat trout (Oncorhynchus clarki bouvieri) growth and reproductive performance over a life cycle. Arch Environ Contam Toxicol 58(1):237–245. doi:10.1007/s00244-009-9392-x CrossRefGoogle Scholar
  12. Holm J, Palace V, Siwik P, Sterling G, Evans R, Baron C, Werner J, Wautier K (2005) Developmental effects of bioaccumulated selenium in eggs and larvae of two salmonid species. Environ Toxicol Chem 24(9):2373–2381. doi:10.1897/04-402r1.1 CrossRefGoogle Scholar
  13. Janz DM, DeForest DK, Brooks ML, Chapman PM, Gilron G, Hoff D, Hopkins WA, McIntyre DO, Mebane CA, Palace V, Skorupa JP, Wayland M (2010) Selenium toxicity to aquatic organisms. In: Chapman PM, Adams JB, Brooks ML et al (eds) Ecological assessment of selenium in the aquatic Environment. CRC Press, Boca Raton, pp 141–232CrossRefGoogle Scholar
  14. Kleinow KM, Brooks AS (1986) Selenium-compounds in the fathead minnow (Pimephales-Promelas). 1. Uptake, distribution, and elimination of orally-administered selenate, selenite and L-selenomethionine. Comp Biochem Phys C 83(1):61–69. doi:10.1016/0742-8413(86)90013-7 CrossRefGoogle Scholar
  15. Kunz JL, Conley JM, Buchwalter DB, Norberg-King TJ, Kemble NE, Wang N, Ingersoll CG (2013) Use of reconstituted waters to evaluate effects of elevated major ions associated with mountaintop coal mining on freshwater invertebrates. Environ Toxicol Chem 32:2826–2835CrossRefGoogle Scholar
  16. Lee DS, Gilbert CR, Hocutt CH, Jenkins RE, McAllister DE, Stauffer J Jr (1980) Atlas of North American freshwater fishes. North Carolina State Museum of Natural History, RaleighGoogle Scholar
  17. Lemly AD (1985) Suppression of native fish populations by green sunfish in 1st-order streams of piedmont North-Carolina. Trans Am Fish Soc 114(5):705–712. doi:10.1577/1548-8659(1985)114<705:Sonfpb>2.0.Co;2 CrossRefGoogle Scholar
  18. Lemly AD (1997) A teratogenic deformity index for evaluating impacts of selenium on fish populations. Ecotoxicol Environ Saf 37(3):259–266. doi:10.1006/eesa.1997.1554 CrossRefGoogle Scholar
  19. Lemly AD (2002a) Selenium assessment in aquatic ecosystems: a guide for hazard evaluation and water quality criteria. Springer, New YorkCrossRefGoogle Scholar
  20. Lemly AD (2002b) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol 57(1–2):39–49. doi:10.1016/S0166-445x(01)00264-8 CrossRefGoogle Scholar
  21. Lindberg TT, Bernhardt ES, Bier R, Helton AM, Merola RB, Vengosh A, Di Giulio RT (2011) Cumulative impacts of mountaintop mining on an Appalachian watershed. Proc Natl Acad Sci USA 108(52):20929–20934. doi:10.1073/pnas.1112381108 CrossRefGoogle Scholar
  22. Liu Y-T, Chenm T-Y, Mackebee WG, Ruhl L, Vengosh A, Hsu-Kim H (2013) Selenium speciation in coal ash spilled at the Tennessee Valley Authority Kingston site. Environ Sci Technol 47:14001–14009CrossRefGoogle Scholar
  23. Merovich GT, Stiles JM, Petty JT, Ziemkiewicz PF, Fulton JB (2007) Water chemistry-based classification of streams and implications for restoring mined Appalachian watersheds. Environ Toxicol Chem 26(7):1361–1369. doi:10.1897/06-424r.1 CrossRefGoogle Scholar
  24. Merricks TC, Cherry DS, Zipper CE, Currie RJ, Valenti TW (2007) Coal-mine hollow fill and settling pond influences on headwater streams in southern West Virginia, USA. Environ Monit Assess 129(1–3):359–378. doi:10.1007/s10661-006-9369-4 CrossRefGoogle Scholar
  25. Misra S, Peak D, Chen N, Hamilton C, Niyogi S (2012) Tissue-specific accumulation and speciation of selenium in rainbow trout (Oncorhynchus mykiss) exposed to elevated dietary selenomethionine. Comp Biochem Physiol C 155(4):560–565. doi:10.1016/j.cbpc.2012.01.005 Google Scholar
  26. Muscatello JR, Janz DM (2009) Assessment of larval deformities and selenium accumulation in Northern Pike (Esox Lucius) and White Sucker (Catostomus Commersoni) exposed to metal mining effluent. Environ Toxicol Chem 28(3):609–618. doi:10.1897/08-222.1 CrossRefGoogle Scholar
  27. Muscatello JR, Belknap AM, Janz DM (2008) Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada. Environ Pollut 156(2):387–393. doi:10.1016/j.envpol.2008.01.039 CrossRefGoogle Scholar
  28. Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8(Pt 2):322–324CrossRefGoogle Scholar
  29. Palmer MA, Bernhardt ES, Schlesinger WH, Eshleman KN, Foufoula-Georgiou E, Hendryx MS, Lemly AD, Likens GE, Loucks OL, Power ME, White PS, Wilcock PR (2010) Mountaintop mining consequences. Science 327(5962):148–149. doi:10.1126/science.1180543 CrossRefGoogle Scholar
  30. Phibbs J, Franz E, Hauck D, Gallego M, Tse JJ, Pickering IJ, Liber K, Janz DM (2011) Evaluating the trophic transfer of selenium in aquatic ecosystems using caged fish, X-ray absorption spectroscopy and stable isotope analysis. Ecotoxicol Environ Saf 74(7):1855–1863. doi:10.1016/j.ecoenv.2011.06.015 CrossRefGoogle Scholar
  31. Pond GJ, Passmore ME, Borsuk FA, Reynolds L, Rose CJ (2008) Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. J N Am Benthol Soc 27(3):717–737. doi:10.1899/08-015.1 CrossRefGoogle Scholar
  32. Poulin R (1992) Toxic pollution and parasitism in fresh-water fish. Parasitol Today 8(2):58–61. doi:10.1016/0169-4758(92)90090-O CrossRefGoogle Scholar
  33. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(Pt 4):537–541. doi:10.1107/S0909049505012719 CrossRefGoogle Scholar
  34. Riggs MR, Esch GW (1987) The suprapopulation dynamics of Bothriocephalus-Acheilognathi in a North-Carolina reservoir—abundance, dispersion, and prevalence. J Parasitol 73(5):877–892. doi:10.2307/3282506 CrossRefGoogle Scholar
  35. Sayers DE, Bunker BA (1988) Data analysis. In: Koningsberger DC, Prins R (eds) A-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. Wiley, New York, pp 211–253Google Scholar
  36. Shea J, Kersten GJ, Puccia CM, Stanton AT, Stiso SN, Helgeson ES, Back EJ (2012) The use of parasites as indicators of ecosystem health as compared to insects in freshwater lakes of the Inland Northwest. Ecol Indic 13(1):184–188. doi:10.1016/j.ecolind.2011.06.001 Google Scholar
  37. Snyder DE (2003) Invited overview: conclusions from a review of electrofishing and its harmful effects on fish. Rev Fish Biol Fisheries 13:445–453CrossRefGoogle Scholar
  38. Stauffer J, J.R., Boltz JM, White LR (1995) The fishes of West Virginia. Proc Acad Nat Sci Phila 146:1–389Google Scholar
  39. Teh SJ, Deng X, Deng DF, Teh FC, Hung SSO, Fan TWM, Liu J, Higashi RM (2004) Chronic effects of dietary selenium on juvenile Sacramento splittail (Pogonichthys macrolepidotus). Environ Sci Technol 38(22):6085–6093. doi:10.1021/Es049545+ CrossRefGoogle Scholar
  40. Troger L, Arvanitis D, Baberschke K, Michaelis H, Grimm U, Zschech E (1992) Full correction of the self-absorption in soft-fluorescence extended X-ray-absorption fine structure. Phys Rev B Condens Matter 46(6):3283–3289CrossRefGoogle Scholar
  41. USEPA (1987) Ambient water quality criteria for selenium-1987. USEPA, WashingtonGoogle Scholar
  42. USEPA (2004) Draft aquatic life water quality criteria for selenium-2004. USEPA, WashingtonGoogle Scholar
  43. USEPA (2005) Mountaintop mining/valley fills in Appalachia. Final Programmatic Environmental Impact Statement, Region 3. PhiladelphiaGoogle Scholar
  44. Vesper DJ, Bryant G, Ziemkiewicz PF (2004) A preliminary study on the speciation of selenium in a West Virginia watershed. Paper presented at the National Meeting of the American Society of Mining and Reclamation, MorgantownGoogle Scholar
  45. Vesper DJ, Roy M, Rhoads CJ (2008) Selenium distribution and mode of occurence in the Kanawha formation, southern West Virginia, USA. Int J Coal Geol 73(3–4):237–249CrossRefGoogle Scholar
  46. WVDEP (2010) Selenium-induced developmental effects among fishes in select West Virginia waters. WVDEP, West VirginiaGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. C. Arnold
    • 1
  • T. Ty Lindberg
    • 1
  • Y. T. Liu
    • 2
    • 3
  • K. A. Porter
    • 2
  • H. Hsu-Kim
    • 2
  • D. E. Hinton
    • 1
  • R. T. Di Giulio
    • 1
  1. 1.Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  2. 2.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA
  3. 3.Department of Environmental Science and EngineeringTunghai UniversityTaichungTaiwan

Personalised recommendations