, Volume 22, Issue 5, pp 779–794 | Cite as

Assessing triclosan-induced ecological and trans-generational effects in natural phytoplankton communities: a trait-based field method

  • Francesco Pomati
  • Luca Nizzetto


We exposed replicated phytoplankton communities confined in semi-permeable membrane-based mesocosms to 0, 0.1, 1 and 10 μg L−1 triclosan (TCS) and placed them back in their original environment to investigate the occurrence of trans-generational responses at individual, population and community levels. TCS diffused out of mesocosms with a half-life of less than 8 h, so that only the parental generation was directly stressed. At the beginning of the experiment and after 7 days (approximately 2 generations) we analysed responses in the phytoplankton using scanning flow-cytometry. We acquired information on several individually expressed phenotypic traits, such as size, biovolume, pigment fluorescence and packaging, for thousands of individuals per replicated population and derived population and community aggregated traits. We found significant changes in community functioning (increased productivity in terms of biovolume and total fluorescence), with maximal effects at 1 μg L−1 TCS. We detected significant and dose-dependent responses on population traits, such as changes in abundance for several populations, increased average size and fluorescence of cells, and strong changes in within-population trait mean and variance (suggesting micro-evolutionary effects). We applied the Price equation approach to partition community effects (changes in biovolume or fluorescence) in their physiological and ecological components, and quantified the residual component (including also evolutionary responses). Our results suggested that evolutionary or inheritable phenotypic plasticity responses may represent a significant component of the total observed change following exposure and over relatively small temporal scales.


Phytoplankton Community ecology Phenotypic evolution Trait-based approach Micropollutants Mesocosms 



We are grateful to J. Jokela, J. Starrfelt and S. Castiglioni for scientific discussion and advice. We thank D. Steiner for technical support in filed and laboratory work and K. Langford for instrumental chemical analysis. This project was supported by NIVA and Eawag through internal discretionary funds.

Supplementary material

10646_2013_1068_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1,671 kb)


  1. Aranami K, Readman JW (2007) Photolytic degradation of triclosan in freshwater and seawater. Chemosphere 66(6):1052–1056CrossRefGoogle Scholar
  2. Artigas J, Arts G, Babut M, Caracciolo AB, Charles S, Chaumot A, Combourieu B, Dahllof I, Despreaux D, Ferrari B, Friberg N, Garric J, Geffard O, Gourlay-France C, Hein M, Hjorth M, Krauss M, De Lange HJ, Lahr J, Lehtonen KK, Lettieri T, Liess M, Lofts S, Mayer P, Morin S, Paschke A, Svendsen C, Usseglio-Polatera P, van den Brink N, Vindimian E, Williams R (2012) Towards a renewed research agenda in ecotoxicology. Environ Pollut 160:201–206Google Scholar
  3. Backhaus T, Porsbring T, Arrhenius A, Brosche S, Johansson P, Blanck H (2011) Single-substance and mixture toxicity of five pharmaceuticals and personal care products to marine periphyton communities. Environ Toxicol Chem SETAC 30:2030–2040CrossRefGoogle Scholar
  4. Baker RJ, Bickham AM, Bondarkov M, Gaschak SP, Matson CW, Rodgers BE, Wickliffe JK, Chesser RK (2001) Consequences of polluted environments on population structure: the bank vole (Clethrionomys glareolus) at chornobyl. Ecotoxicology 10(4):211–216CrossRefGoogle Scholar
  5. Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B (2012) Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ Sci Pollut Res 19(4):1044–1065CrossRefGoogle Scholar
  6. Bickham J (2011) The four cornerstones of Evolutionary Toxicology. Ecotoxicology 20(3):497–502CrossRefGoogle Scholar
  7. Brown J, Bernot MJ, Bernot RJ (2012) The influence of TCS on the growth and behavior of the freshwater snail, Physa acuta. J Environ Sci Health A Tox Hazard Subst Environ Eng 47(11):1626–1630CrossRefGoogle Scholar
  8. Ciniglia C, Cascone C, Lo Giudice R, Pinto G, Pollio A (2005) Application of methods for assessing the geno- and cytotoxicity of triclosan to C. ehrenbergii. J Hazard Mater 122(3):227–232CrossRefGoogle Scholar
  9. Collier JL (2000) Flow cytometry and the single cell in phycology. J Phycol 36:628–644CrossRefGoogle Scholar
  10. Collins S (2011) Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc Biol Sci 278:247–255CrossRefGoogle Scholar
  11. Collins S, Gardner A (2009) Integrating physiological, ecological and evolutionary change: a Price equation approach. Ecol Lett 12:744–757CrossRefGoogle Scholar
  12. Coogan MA, Edziyie RE, La Point TW, Venables BJ (2007) Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Chemosphere 67(10):1911–1918CrossRefGoogle Scholar
  13. Czechowska K, van der Meer JR (2011) A flow cytometry based oligotrophic pollutant exposure test to detect bacterial growth inhibition and cell injury. Environ Sci Technol 45:5820–5827CrossRefGoogle Scholar
  14. Dalkvist T, Topping CJ, Forbes VE (2009) Population-level impacts of pesticide-induced chronic effects on individuals depend more on ecology than toxicology. Ecotoxicol Environ Saf 72(6):1663–1672CrossRefGoogle Scholar
  15. Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31:285–311CrossRefGoogle Scholar
  16. de la Broise D, Palenik B (2007) Immersed in situ microcosms: a tool for the assessment of pollution impact on phytoplankton. J Exp Mar Biol Ecol 341:274–281CrossRefGoogle Scholar
  17. DeLorenzo ME, Keller JM, Arthur CD, Finnegan MC, Harper HE, Winder VL, Zdankiewicz DL (2008) Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environ Toxicol 23(2):224–232CrossRefGoogle Scholar
  18. Dray S, Legendre P (2008) Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology 89:3400–3412CrossRefGoogle Scholar
  19. Dubelaar GBJ, Visser JW, Donze M (1987) Anomalous behaviour of forward and perpendicular light scattering of a cyanobacterium owing to intracellular gas vacuoles. Cytometry 8:405–412CrossRefGoogle Scholar
  20. Dubelaar GBJ, Geerders PJF, Jonker RR (2004) High frequency monitoring reveals phytoplankton dynamics. J Environ Monit 6:946–952CrossRefGoogle Scholar
  21. ECHA (2012) European Chemical Agency.
  22. Echeveste P, Agustí S, Dachs J (2010) Cell size dependent toxicity thresholds of polycyclic aromatic hydrocarbons to natural and cultured phytoplankton populations. Environ Pollut 158:299–307CrossRefGoogle Scholar
  23. Echeveste P, Agustí S, Dachs J (2011) Cell size dependence of additive versus synergetic effects of UV radiation and PAHs on oceanic phytoplankton. Environ Pollut 159:1307–1316CrossRefGoogle Scholar
  24. Edwards KF, Litchman E, Klausmeier CA (2013) Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem. Ecol Lett 16(1):56–63CrossRefGoogle Scholar
  25. Ellner SP, Geber MA, Hairston NG (2011) Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol Lett 14:603–614CrossRefGoogle Scholar
  26. Fernandes M, Shareef A, Kookana R, Gaylard S, Hoare S, Kildea T (2011) The distribution of triclosan and methyl-triclosan in marine sediments of Barker Inlet South Australia. J Environ Monit 13(4):801–806CrossRefGoogle Scholar
  27. Fischer BB, Pomati F, Eggen RIL (2013) The toxicity of chemical pollutants in dynamic natural systems: the challenge of integrating environmental factors and biological complexity. Sci Total Environ 449:253–259CrossRefGoogle Scholar
  28. Foladori P, Quaranta A, Ziglio G (2008) Use of silica microspheres having refractive index similar to bacteria for conversion of flow cytometric forward light scatter into biovolume. Water Res 42:3757–3766CrossRefGoogle Scholar
  29. Fox JW (2006) Using the Price equation to partition the effects of biodiversity loss on ecosystem function. Ecology 87:2687–2696CrossRefGoogle Scholar
  30. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis and density estimation. J Am Stat Assoc 97:611–631CrossRefGoogle Scholar
  31. Franz S, Altenburger R, Heilmeier H, Schmitt-Jansen M (2008) What contributes to the sensitivity of microalgae to triclosan? Aquat Toxicol 90(2):102–108CrossRefGoogle Scholar
  32. Gardner A (2008) The Price equation. Curr Biol 18:198–202CrossRefGoogle Scholar
  33. Gingerich PD (2009) Rates of evolution. Annu Rev Ecol Evol Syst 40:657–675CrossRefGoogle Scholar
  34. Guillard RRL, Lorenzen CJ (1972) Yellow–green algae with chlorophyllide. J Phycol 8:10–14Google Scholar
  35. Haldane JBS (1949) Suggestions as to quantitative measurement of rates of evolution. Evolution 3:51–56CrossRefGoogle Scholar
  36. Halden RU, Paull DH (2005) Co-occurrence of triclocarban and triclosan in US water resources. Environ Sci Technol 39(6):1420–1426CrossRefGoogle Scholar
  37. Harmon LJ, Matthews B, Des Roches S, Chase JM, Shurin JB, Schluter D (2009) Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458(7242):1167–1170CrossRefGoogle Scholar
  38. Hassler CS, Twiss MR, Simon DF, Wilkinson KJ (2008) Porous underwater chamber (PUC) for in situ determination of nutrient and pollutant bioavailability to microorganisms. Limnol Oceanogr Methods 6:277–287CrossRefGoogle Scholar
  39. Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29CrossRefGoogle Scholar
  40. Huertas IE, Rouco M, López-Rodas V, Costas E (2010) Estimating the capability of different phytoplankton groups to adapt to contamination: herbicides will affect phytoplankton species differently. New phytol 188:478–487CrossRefGoogle Scholar
  41. Ippolito A, Todeschini R, Vighi M (2012) Sensitivity assessment of freshwater macroinvertebrates to pesticides using biological traits. Ecotoxicology 21:336–352CrossRefGoogle Scholar
  42. Kent RA, Currie D (1995) Predicting algal sensitivity to a pesticide stress. Environ Toxicol Chem 14(6):983–991CrossRefGoogle Scholar
  43. Knauert S, Dawo U, Hollender J, Hommen U, Knauer K (2009) Effects of photosystem II inhibitors and their mixture on freshwater phytoplankton succession in outdoor mesocosms. Environ Toxicol Chem SETAC 28:836–845CrossRefGoogle Scholar
  44. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  45. Lindström A, Buerge IJ, Poiger T, Bergqvist P-A, Müller MD, Buser H-R (2002) Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36:2322–2329CrossRefGoogle Scholar
  46. Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639CrossRefGoogle Scholar
  47. Litchman E, Klausmeier CA, Schofield OM, Falkowski PG (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett 10(12):1170–1181CrossRefGoogle Scholar
  48. Lyndall J, Fuchsman P, Bock M, Barber T, Lauren D, Leigh K, Perruchon E, Capdevielle M (2010) Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues. Integr Environ Assess Manag 6:419–440CrossRefGoogle Scholar
  49. Malkassian A, Nerini D, van Dijk MA, Thyssen M, Mante C, Gregori G (2011) Functional analysis and classification of phytoplankton based on data from an automated flow cytometer. Cytometry A 79:263–275Google Scholar
  50. Matson CW (2006) Evolutionary toxicology: population-effects of chronic contaminant exposure on the marsh frogs (Rana ridibunda) of Azerbaijan. Environ Health Perspect 114(4):547–552CrossRefGoogle Scholar
  51. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185CrossRefGoogle Scholar
  52. Mezcua M, Gomez MJ, Ferrer I, Aguera A, Hernando MD, Fernández-Alba AR (2004) Evidence of 2,7/2,8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewater samples. Anal Chim Acta 524 (2004):241–247Google Scholar
  53. Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, Dieckmann U (2004) Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428(6986):932–935CrossRefGoogle Scholar
  54. Ozgul A, Tuljapurkar S, Benton TG, Pemberton JM, Clutton-Brock TH, Coulson T (2009) The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325:464–467Google Scholar
  55. Pomati F, Jokela J, Simona M, Veronesi M, Ibelings BW (2011) An automated platform for phytoplankton ecology and aquatic ecosystem monitoring. Environ Sci Technol 45:9658–9665CrossRefGoogle Scholar
  56. Pomati F, Kraft NJB, Posch T, Eugster B, Jokela J, Ibelings BW (2013) Trait-based analysis of spring bloom phytoplankton communities in Lake Zurich (Switzerland) reveals both niche-based and neutral dynamics. PLOS One, (submitted)Google Scholar
  57. Powers CD, Rowland RG, Wurster CF (1976) Dialysis membrane chambers as a device for evaluating impacts of pollutants on plankton under natural conditions. Water Res 10:991–994CrossRefGoogle Scholar
  58. Preuss TG, Hommen U, Alix A, Ashauer R, van den Brink P, Chapman P, Ducrot V, Forbes V, Grimm V, Schafer D, Streissl F, Thorbek P (2009) Mechanistic effect models for ecological risk assessment of chemicals (MEMoRisk)-a new SETAC-Europe Advisory Group. Environ Sci Pollut Res Int 16(3):250–252CrossRefGoogle Scholar
  59. Proia L, Morin S, Peipoch M, Romaní AM, Sabater S (2011) Resistance and recovery of river biofilms receiving short pulses of triclosan and diuron. Sci Total Environ 409:3129–3137Google Scholar
  60. R-Development-Core-Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing
  61. Reid MJ, Langford KH, Morland J, Thomas KV (2011) Quantitative assessment of time dependent drug-use trends by the analysis of drugs and related metabolites in raw sewage. Drug Alcohol Depend 119(3):179–186CrossRefGoogle Scholar
  62. Reiss J, Bridle JR, Montoya JM, Woodward G, Montoya M (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–514CrossRefGoogle Scholar
  63. Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  64. Ricart M, Franz S, Schmitt-jansen M, Guasch H (2012) The use of photosynthetic fluorescence parameters from autotrophic biofilms for monitoring the effect of chemicals in river ecosystems. In: Guasch H, Ginebreda A, Geiszinger A (eds) Emerging and priority pollutants in rivers, vol 19. Springer, Berlin, pp 85–115CrossRefGoogle Scholar
  65. Rubach MN, Ashauer R, Buchwalter DB, De Lange H, Hamer M, Preuss TG, Töpke K, Maund SJ (2011) Framework for traits-based assessment in ecotoxicology. Integr Environ Assess Manag 7:172–186CrossRefGoogle Scholar
  66. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J (2012) Anticipating critical transitions. Science 338:344–348Google Scholar
  67. Schmitt-Jansen M, Veit U, Dudel G, Altenburger R (2008) An ecological perspective in aquatic ecotoxicology: approaches and challenges. Basic Appl Ecol 9:337–345CrossRefGoogle Scholar
  68. Seehausen O, vanAlphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277(5333):1808–1811CrossRefGoogle Scholar
  69. Segner H (2007) Ecotoxicology: how to assess the impact of toxicants in a multi-factorial environment? In multiple stressors: a challenge for the future. Nato Science for Peace and Security Series C: Environmental Security, pp 39–56Google Scholar
  70. Singer H, Müller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004CrossRefGoogle Scholar
  71. Stomp M, van Dijk MA, van Overzee HMJ, Wortel MT, Sigon CAM, Egas M, Hoogveld H, Gons HJ, Huisman J, Dijk MAV, Overzee HMJV, Overzee MJV (2008) The timescale of phenotypic plasticity and its impact on competition in fluctuating environments. Am Nat 172:169–185Google Scholar
  72. Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas M-L, Biology E, Universiteit V, Arbor A, Supe EN (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Change Biol 14:1125–1140CrossRefGoogle Scholar
  73. Svanbäck R, Pineda-Krch M, Doebeli M (2009) Fluctuating population dynamics promotes the evolution of phenotypic plasticity. Am Nat 174:176–189CrossRefGoogle Scholar
  74. Ter Braak CJF, Cormont A, Dray S (2012) Improved testing of species traits-environment relationships in the fourth corner problem. Ecology 93(7):1525–26Google Scholar
  75. Theodorakis CW, Shugart LR (1997) Genetic ecotoxicology II: population genetic structure in mosquitofish exposed in situ to radionuclides. Ecotoxicology 6(6):335–354CrossRefGoogle Scholar
  76. Thomas KV, Bijlsma L, Castiglioni S, Covaci A, Emke E, Grabic R, Hernandez F, Karolak S, Kasprzyk-Hordern B, Lindberg RH, de Alda ML, Meierjohann A, Ort C, Pico Y, Quintana JB, Reid M, Rieckermann J, Terzic S, van Nuijs ALN, de Voogt P (2012) Comparing illicit drug use in 19 European cities through sewage analysis. Sci Total Environ 432:432–439CrossRefGoogle Scholar
  77. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892CrossRefGoogle Scholar
  78. Vonlanthen P, Bittner D, Hudson AG, Young KA, Müller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, Seehausen O (2012) Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–362Google Scholar
  79. Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJJ, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, Osdol WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349Google Scholar
  80. Wilson BA, Smith VH, deNoyelles F, Larive CK (2003) Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ Sci Technol 37:1713–1719CrossRefGoogle Scholar
  81. Wirgin I, Roy NK, Loftus M, Chambers RC, Franks DG, Hahn ME (2011) Mechanistic basis of resistance to PCBs in Atlantic tomcod from the Hudson River. Science 331:1322–1325CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Aquatic EcologySwiss Federal Institute of Aquatic Science and Technology (EAWAG)DübendorfSwitzerland
  2. 2.Norwegian Institute for Water ResearchOsloNorway
  3. 3.Research Centre for Toxic Compounds in the Environment (RECETOX)BrnoCzech Republic

Personalised recommendations