, Volume 22, Issue 2, pp 377–386 | Cite as

Coumatetralyl resistance of Rattus tanezumi infesting oil palm plantations in Indonesia

  • J. AndruEmail author
  • J. F. Cosson
  • J. P. Caliman
  • E. Benoit


Rodent control is an important issue in human health and agriculture. Oil palm plantations are rapidly expanding in Indonesia and this is having a major economic and ecological impact. Rodent control in oil palm plantations is based principally on the use of anti-vitamin K (AVK), the main anticoagulant used being coumatetralyl, a first-generation AVK. We conducted a comparative study in two well established oil palm plantations in Indonesia: (1) one without chemical control in Riau and (2) another with intensive coumatetralyl use on Bangka Island. Rat species were identified by the molecular barcoding method. Susceptibility to coumatetralyl was then assessed within the two populations and we screened for mutations in vkorc1, which encodes the molecular target of AVK. Different species were found in the two areas: Rattus tiomanicus in Riau, and a mix of R. tanezumi and a close relative one in Bangka. The rats in Riau were much more susceptible to coumatetralyl than those in Bangka. This study is the first to demonstrate physiological tolerance to AVK in these species. vkorc1 displayed low levels of polymorphism, and no SNP was associated with the high-tolerance phenotypes of R. tanezumi clade, even those exposed to very high concentrations (32 × the effective dose of 0.36 mg kg−1). The biochemical basis of this tolerance remains unknown, but may involve the vkorc1 promoter and/or cytochrome P450 metabolism. We discuss our results and the selective role of anticoagulant use in the occurrence of phenotypic tolerance.


vkorc1 Anticoagulant Rattus tanezumi Rattus tiomanicus Rodent control South-East Asia 



Prothrombin time


Anti-vitamin K


Vitamin-K epoxide reductase


Vitamin-K epoxide reductase subunit 1


Single nucleotide polymorphism



We would like to thank all the staff in Indonesia for assistance with field work. We thank D. Bourguet, G. Dobigny, and J-F Martin for scientific assistance and Y. Chaval for technical assistance. We thank M.L. Delignette-Muller for statistical advice. This work was supported by the French Association Nationale Recherche Technologie (ANRT) and two companies: Liphatech and PT-SMART.


  1. Aplin KP, Brown PR, Jacob J, Krebs CJ, Singleton GR (2003) Field methods for rodent studies in Asia and the Indo-Pacific. Australian Centre for International Agricultural Research, CanberraGoogle Scholar
  2. Belfiore NM, Anderson SL (2001) Effects of contaminants on genetic patterns in aquatic organisms: a review. Mutat Res 489:97–122CrossRefGoogle Scholar
  3. Berrill M, Bertram S, McGilliray L, Kolohon M, Pauli B (1994) Effects of low concentrations of forest-use pesticides on frog embryos and tadpoles. Environ Toxicol Chem 13:657–664CrossRefGoogle Scholar
  4. Bridges CM, Semlitsch RD (2000) Variation in pesticide tolerance of tadpoles among and within species of Ranidae and patterns of amphibian decline. Conserv Biol 14:1490–1499CrossRefGoogle Scholar
  5. Buckle AP, Chia TH, Fenn MGP, Visvalingam M (1997) Ranging behaviour and habitat utilisation of the Malayan wood rat (Rattus tiomanicus) in an oil palm plantation in Johore, Malaysia. Crop Prot 16:467–473CrossRefGoogle Scholar
  6. Carter C, Finley W, Fry J, Jackson D, Willis L (2007) Palm oil markets and future supply. Eur J Lipid Sci Technol 109:307–314CrossRefGoogle Scholar
  7. Corley RHW, Tinker PB (2003) The Oil Palm, 4th edn. Wiley-Blackwell, OxfordGoogle Scholar
  8. Coustau C, Chevillon C, Ffrench-Constant R (2000) Resistance to xenobiotics and parasites: can we count the cost? Trends Ecol Evol 15:378–383CrossRefGoogle Scholar
  9. Diaz JC, Song Y, Moore A, Borchert JN, Kohn M (2010) Analysis of vkorc1 polymorphisms in Norway rats using the roof rat as outgroup. BMC Genet 11:43CrossRefGoogle Scholar
  10. Dowding CV, Shore RF, Worgan A, Baker PJ, Harris S (2010) Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus). Environ Pollut 158:161–166CrossRefGoogle Scholar
  11. Endepols S, Prescott CV, Klemann N, Buckle AP (2007) Susceptibility to the anticoagulants bromadiolone and coumatetralyl in wild Norway rats (Rattus norvegicus) from the UK and Germany. Int J Pest Manag 53:285–290CrossRefGoogle Scholar
  12. Fisher P, O’Connor C, Wright G, Eason CT (2003) Persistence of four anticoagulant rodenticides in the livers of laboratory rats. DOC Sci Intern Ser 139, Dep Conserv, Wellington. Accessed 18 Dec 2012
  13. Fisher P, O’Connor C, Wright G, Eason CT (2004) Anticoagulant residues in rats and secondary non-target risk. DOC Sci Intern Ser 188, Dep Conserv, Wellington. Accessed 18 Dec 2012
  14. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, Milligan PE, Grice G, Lenzini P, Rettie AE, Aquilante CL, Grosso L, Marsh S, Langaee T, Farnett LE, Voora D, Veenstra DL, Glynn RJ, Barrett A, McLeod HL (2008) Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 84:326–331CrossRefGoogle Scholar
  15. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefGoogle Scholar
  16. Grandemange A, Kohn MH, Lasseur R, Longin-Sauvageon C, Berny P, Benoit E (2009) Consequences of the Y139F Vkorc1 mutation on resistance to AVKs: in vivo investigation in a 7th generation of congenic Y139F strain of rats. Pharmacogenet Genomics 19:742–750CrossRefGoogle Scholar
  17. Grandemange A, Lasseur R, Longin-Sauvageon C, Benoit E, Berny P (2010) Distribution of VKORC1 single nucleotide polymorphism in wild Rattus norvegicus in France. Pest Manag Sci 66:270–276CrossRefGoogle Scholar
  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  19. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B 270:313–321CrossRefGoogle Scholar
  20. Heiberg AC (2009) Anticoagulant resistance: a relevant issue in sewer rat (Rattus norvegicus) control? Pest Manag Sci 65:444–449CrossRefGoogle Scholar
  21. Hermodson MA, Suttie JW, Link KP (1969) Warfarin metabolism and vitamin K requirement in the warfarin resistant rat. Am J Physiol 217:1316–1319Google Scholar
  22. Huang BH, Feng ZY, Yue LF, Yao DD, Gao ZX, Wang DW, Liu XH (2011) Warfarin resistance test and polymorphism screening in the VKORC1 gene in Rattus flavipectus. J Pest Sci 84:87–92CrossRefGoogle Scholar
  23. Ishizuka M, Okajima F, Tanikawa T, Min H, Tanaka KD, Sakamoto KQ, Fujita S (2007) Elevated warfarin metabolism in warfarin-resistant roof rats (Rattus rattus) in Tokyo. Drug Metab Dispos 35:62–66CrossRefGoogle Scholar
  24. Kohn MH, Price RE, Pelz HJ (2008) A cardiovascular phenotype in warfarin-resistant Vkorc1 mutant rats. Artery Res 2:138–147CrossRefGoogle Scholar
  25. Li T, Chang C-Y, Jin D-Y, Lin P-J, Khvorova A, Stafford DW (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427:541–544CrossRefGoogle Scholar
  26. Li W, Schulman S, Dutton RJ, Boyd D, Beckwith J, Rapoport TA (2010) Structure of a bacterial homologue of vitamin K epoxide reductase. Nature 463:507–512CrossRefGoogle Scholar
  27. Mills JN, Childs JE (1998) Ecologic studies of rodent reservoirs: their relevance for human health. Emerg Infect Dis 4:529–537CrossRefGoogle Scholar
  28. Musser G, Carleton M (2005) Superfamily Muroidea. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore, pp 894–1531Google Scholar
  29. Normile D (2010) Holding back a torrent of rats. Science 327:806–807CrossRefGoogle Scholar
  30. O’Connor CE, Eason CT, Endepols S (2003) Evaluation of secondary poisoning hazards to ferrets and weka from the rodenticide coumatetralyl. Wildl Res 30:143–146CrossRefGoogle Scholar
  31. Oldenburg J, Watzka M, Rost S, Muller CR (2007) VKORC1: molecular target of coumarins. J Thromb Haemost 5:1–6CrossRefGoogle Scholar
  32. Ostfeld RS, Holt RD (2004) Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Front Ecol Environ 2:13–20CrossRefGoogle Scholar
  33. Pages M, Chaval Y, Herbreteau V, Waengsothorn S, Cosson JF, Hugot JP, Morand S, Michaux J (2010) Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries. BMC Evol Biol 10:184CrossRefGoogle Scholar
  34. Panwar P (2008) Bamboo and famine. Curr Sci 94:1547Google Scholar
  35. Partridge GG (1980) The vitamin-K requirements of wild brown rats (Rattus norvegicus) resistant to warfarin. Comp Biochem Physiol 66:3–7CrossRefGoogle Scholar
  36. Pelz H-J, Rost S, Huenerberg M, Fregin A, Heiberg AC, Baert K, MacNicoll AD, Prescott CV, Walker AS, Oldenburg J, Mueller CR (2005) The genetic basis of resistance to anticoagulants in rodents. Genet 170:1839–1847CrossRefGoogle Scholar
  37. Plyusnina A, Ibrahim IN, Plyusnin A (2009) A newly recognized Hantavirus in the Asian house rat (Rattus tanezumi) in Indonesia. J Gen Virol 90:205–209CrossRefGoogle Scholar
  38. Prescott CV (2003) A reappraisal of blood clotting response tests for anticoagulant resistance and a proposal for a standardised BCR test methodology. RRAC, Tech monogr 2003, Croplife Int, Brussel. Accessed 18 Dec 2012
  39. Prescott CV, Buckle AP (2000) Blood-clotting response tests for resistance to diphacinone and chlorophacinone in the Norway rat (Rattus norvegicus Berk.). Crop Prot 19:291–296CrossRefGoogle Scholar
  40. Rishavy MA, Usubalieva A, Hallgren KW, Berkner KL (2010) Novel insight into the mechanism of the vitamin K oxidoreductase (VKOR): electron relay through Cys43 and Cys51 reduces VKOR to allow vitamin K reduction and facilitation of vitamin K-dependent protein carboxylation. J Biol Chem 286:7267–7278CrossRefGoogle Scholar
  41. Rist L, Feintrenie L, Levang P (2010) The livelihood impacts of oil palm: smallholders in Indonesia. Biodivers Conserv 19:1009–1024CrossRefGoogle Scholar
  42. Robins JH, Hingston M, Matisoo-Smith E, Ross HA (2007) Identifying Rattus species using mitochondrial DNA. Mol Ecol Notes 7:717–729CrossRefGoogle Scholar
  43. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, Lappegard K, Seifried E, Scharrer I, Tuddenham EGD, Muller CR, Strom TM, Oldenburg J (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nat 427:537–541CrossRefGoogle Scholar
  44. Rost S, Pelz HJ, Menzel S, MacNicoll A, Leon V, Song KJ, Jakel T, Oldenburg J, Muller CR (2009) Novel mutations in the VKORC1 gene of wild rats and mice—a response to 50 years of selection pressure by warfarin? BMC Genet 10:4CrossRefGoogle Scholar
  45. Singleton GR, Hinds LA, Krebs CJ, Spratt DM (2003) Rats, mice and people: rodent biology and management. Aust Cent Int Agric Res, Camberra. Accessed 18 Dec 2012
  46. Singleton GR, Sudarmaji Jacob J, Krebs CJ (2005) Integrated management to reduce rodent damage to lowland rice crops in Indonesia. Agric Ecosyst Environ 107:75–82CrossRefGoogle Scholar
  47. Sroda S, Cossu-Leguille C (2011) Effects of sublethal copper exposure on two gammarid species: which is the best competitor? Ecotoxicol 20:264–273CrossRefGoogle Scholar
  48. Suttie JW (1987) The biochemical basis of warfarin therapy. Adv Exp Med Biol 214:3–16Google Scholar
  49. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, Whittaker P, Ranganath V, Kumanduri V, McLaren W, Holm L, Lindh J, Rane A, Wadelius M, Deloukas P (2009) A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 5:e1000433CrossRefGoogle Scholar
  50. Vandenbroucke V, Bousquet-Melou A, De Backer P, Croubels S (2008) Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. J Vet Pharmacol Ther 31:437–445CrossRefGoogle Scholar
  51. Vein J, Grandemange A, Cosson JF, Benoit E, Berny P (2011) Are water vole resistant to anticoagulant rodenticides following field treatments? Ecotoxicol 20:1432–1441CrossRefGoogle Scholar
  52. Walker LA, Turk A, Long SM, Wienburg CL, Best J, Shore RF (2008) Second generation anticoagulant rodenticides in tawny owls (Strix aluco) from Great Britain. Sci Total Environ 392:93–98CrossRefGoogle Scholar
  53. Wallin R, Hutson SM (2004) Warfarin and the vitamin K-dependent γ-carboxylation system. Trends Mol Med 10:299–302CrossRefGoogle Scholar
  54. Wang J, Feng Z, Yao D, Sui J, Zhong W, Li M, Dai J (2008) Warfarin resistance in Rattus losea in Guangdong Province, China. Pesticide Biochem Physiol 91:90–95CrossRefGoogle Scholar
  55. Watanabe KP, Saengtienchai A, Tanaka KD, Ikenaka Y, Ishizuka M (2010) Comparison of warfarin sensitivity between rat and bird species. Comp Biochem Physiol Part C: Toxicol Pharmacol 152:114–119CrossRefGoogle Scholar
  56. Whitten T, Damanik SJ, Anwar J, Hisyam N (2000) Uncommon lowland forests. In: Periplus (ed) The ecology of Sumatra. pp 253–276Google Scholar
  57. Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  58. Wood BJ, Fee CG (2003) A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop Prot 22:445–461CrossRefGoogle Scholar
  59. Wu S, Liu S, Davis CH, Stafford DW, Kulman JD, Pedersen LG (2011) A hetero-dimer model for concerted action of vitamin K carboxylase and vitamin K reductase in vitamin K cycle. J Theor Biol 279:143–149CrossRefGoogle Scholar
  60. Yuan HY, Chen JJ, Lee MTM, Wung JC, Chen YF, Charng MJ, Lu MJ, Hung CR, Wei CY, Chen CH, Wu JY, Chen YT (2005) A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 14:1745–1751CrossRefGoogle Scholar
  61. Zimmermann A, Matschiner JT (1974) Biochemical basis of hereditary resistance to warfarin in the rat. Biochem Pharmacol 23:1033–1040CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • J. Andru
    • 1
    • 2
    Email author
  • J. F. Cosson
    • 3
  • J. P. Caliman
    • 4
  • E. Benoit
    • 1
  1. 1.VetAgro Sup, UMR 1233 INRA-DGER, Métabolisme des Xénobiotiques et MycotoxinesLyon UniversityMarcy l’EtoileFrance
  2. 2.Liphatech (De Sangosse Group) Research and Development UnitPont du CasseFrance
  3. 3.INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de BaillarguetMontferrier-sur-Lez cedexFrance
  4. 4.SMART Research InstitutePekanbaruIndonesia

Personalised recommendations