Ecotoxicology

, Volume 22, Issue 2, pp 339–362 | Cite as

The response of soil organism communities to the application of the insecticide lindane in terrestrial model ecosystems

  • B. Scholz-Starke
  • A. Beylich
  • T. Moser
  • A. Nikolakis
  • N. Rumpler
  • A. Schäffer
  • B. Theißen
  • A. Toschki
  • M. Roß-Nickoll
Article

Abstract

The EU plant protection regulation 1107/2009/EC defines the requirements for active ingredients to be approved, specifically including the assessment of effects on biodiversity and ecosystems. According to that, semi-field methods are expected to be more important in the near future. Therefore, a higher-tier experiment suitable to assess the risk for soil organisms was conducted to further develop the TME (terrestrial model ecosystems) methodology in a dose–response design with the persistent insecticidal model compound lindane (gamma-HCH). The effects of lindane on soil communities such as collembolans, oribatid mites, nematodes, soil fungi and plant biomass were determined in 42 TME. Intact TME-soil cores (diameter 300 mm, height 400 mm) from undisturbed grassland were stored outdoor under natural climatic conditions. Lindane was applied in five concentrations between 0.032 mg active ingredients (ai)/kg dry soil and 3.2 mg ai/kg dry weight soil, six-fold replicated each. Twelve TME served as untreated controls. Abundance and community structures of oribatids, collembolans, enchytraeids, nematodes and fungi were recorded. Oribatid mites’ community responded 3 months after treatment, although they were not significantly affected by the overall treatment regimen. Collembolans in total and species-specific abundance as well as the community endpoints (principal response curves, diversity measures) were adversely affected by moderate dosages of lindane. Effects were transient between 3 and 5 months after treatment with a recovery within 1 year. No significant effects could be detected for enchytraeids, nematodes and fungi. The study design and the obtained results allow for calculations of no observed effect concentrations below the highest treatment level for populations and for soil communities as defined entities, as well as effective concentrations. The paper discusses the limits of effect detection in the light of achievable coefficients of variation and by means of minimum detectable differences. Outdoor TME are useful to analyze and assess functional and structural endpoints in soil organisms’ communities and their possible recovery after pesticide treatment within 1 year.

Keywords

Soil communities Terrestrial model ecosystems Lindane Dose–response Higher-tier risk assessment Community NOEC/ECx 

Notes

Acknowledgments

The elaborated data were generated and financed as part of a cooperative project between the RWTH Aachen University, gaiac Forschungsinstitut für Ökosystemanalyse und -bewertung e.V., Bayer CropScience and the sub-contracted institutions ECT Oekotoxikologie GmbH and IFAB Institut für Angewandte Bodenbiologie GmbH. The authors pursue no commercial intents regarding the test substance and the results of the study. All benefits in any form from a commercial party related directly or indirectly to the subject of this manuscript for any of the authors have been acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Beylich A, Graefe U (2009) Investigations of annelids at soil monitoring sites in Northern Germany: reference ranges and time-series data. Soil Org 81:175–196Google Scholar
  2. Bongers T (1988) De nematoden van Nederland: een identificatietabel voor de Nederland aangetroffen zoetwater-en bodembewonende nematoden. Koninklijke Nederlandse Natuurhistorische VerenigingGoogle Scholar
  3. Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on soil nematode species composition. Oecologia 83:14–19CrossRefGoogle Scholar
  4. Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228CrossRefGoogle Scholar
  5. Bortz J (1985) Lehrbuch der Statistik. Springer, HeidelbergGoogle Scholar
  6. Boyle TP, Smillie GM, Anderson JC, Beeson DR (1990) A sensitivity analysis of nine diversity and seven similarity indices. Res J Water Pollut Control Fed 62:749–762Google Scholar
  7. Bretfeld G (1999) Synopses on Palearctic Collembola, vol 2: Symphypleona. Abhandlungen und Berichte des Naturkundemuseum Görlitz 71:1–318Google Scholar
  8. Brock TCM, Arts GHP, Maltby L, Van den Brink PJ (2006) Aquatic risks of pesticides, ecological protection goals, and common aims in European Union Legislation. Integr Environ Assess Manag 2:e20–e46CrossRefGoogle Scholar
  9. Brown JKM (2004) Experimental design generator and randomiser II. Cereals Research Department, John Innes CentreGoogle Scholar
  10. Brown K, Tomlinson J, Duncan J, Hinchcliffe A, Palmquist K (2009) Critical comparison of available and potential higher tier testing approaches for the risk assessment of plant protection products, considering at least field and semi-field experimental designs, extrapolation from dose–response relationships, and increased dosages (aquatic and terrestrial). Literature reviews prepared for the European Food Safety Authority on ecotoxicology of chemicals with special focus on plant protection products. Reference:CFT/EFSA/PPR/2008/01Google Scholar
  11. Bulawa B (2004) Der mikrobielle Umsatz von Ernterückständen in einem landwirtschaftlich genutzten Boden und dessen Beeinflussung durch ausgewählte Xenobiotica. PhD thesis, RWTH Aachen UniversityGoogle Scholar
  12. Cairns J (1984) Are single species toxicity tests alone adequate for estimating environmental hazard? Environ Monit Assess 4:259–273CrossRefGoogle Scholar
  13. Cobb NA (1918) Estimating the nema population of the soil. United States Department of Agriculture, Agricultural Technical Circular (1)Google Scholar
  14. Crane M, Newman MC (2000) What level of effect is a no observed effect? Environ Toxicol Chem 19:516–551CrossRefGoogle Scholar
  15. Didden W, Römbke J (2001) Enchytraeids as indicator organisms for chemical stress in terrestrial ecos ystems. Ecotoxicol Environ Saf 50:25–43CrossRefGoogle Scholar
  16. Djajakirana G, Joergensen RG, Meyer B (1996) Ergosterol and microbial biomass relationship in soil. Biol Fertil Soils 22:299–304CrossRefGoogle Scholar
  17. Dunger W, Fiedler HJ (1997) Methoden der Bodenbiologie. S. Fischer, JenaGoogle Scholar
  18. Eash NS, Stahl PD, Parkin TB, Karlen DL (1996) A simplified method for extraction of ergosterol from soil. Soil Sci Soc Am J 60:468–471CrossRefGoogle Scholar
  19. EFSA panel of plant protection products and their residues (PPR) (2010) Scientific opinion on the development of specific protection goal options for environmental risk assessment of pesticides, in particular in relation to the revision of the guidance documents on aquatic and terrestrial ecotoxicology (SANCO/3268/2001 and SANCO/10329/2002) The EFSA Journal 8:1821Google Scholar
  20. Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183CrossRefGoogle Scholar
  21. European Commission (2000) IUCLID Dataset on gamma-HCH. Year 2000 CD-ROM EditionGoogle Scholar
  22. European Commission (2002) Guidance Document on Aquatic Ecotoxicology in the context of the Directive 91/414/EEC. Sanco/3268/2001 rev.4 (final)Google Scholar
  23. European Commission (2009) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Offic J Europ Union L309:1–50Google Scholar
  24. European Food Safety Authority (2010) Scientific opinion on the development of a soil ecoregions concept using distribution data on invertebrates. The EFSA Journal 8:1820Google Scholar
  25. Ferris MJ, Ward DM (1997) Seasonal distribution of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381Google Scholar
  26. Fjellberg A (1980) Identification keys to Norwegian Collembola. Norsk Entomologist Forening, NorwayGoogle Scholar
  27. Fjellberg A (1998) The Collembola of Fennoscandia and Denmark. Part I: Poduromorpha. Fauna Entomologica Scandinavica vol 38. Brill, LeidenGoogle Scholar
  28. Folker-Hansen P, Krogh PH, Holmstrup M (1996) Effect of Dimethoate on body growth of representatives of the soil living mesofauna. Ecotoxicol Environ Saf 33:207–216CrossRefGoogle Scholar
  29. Frampton GK, Van den Brink PJ (2007) Collembola and macroarthropod community responses to carbamate, organophosphate and synthetic pyrethroid insecticides: direct and indirect effects. Environ Pollut 147:14–25CrossRefGoogle Scholar
  30. Frampton GK, Jänsch S, Scott-Fordsmand JJ, Römbke J, Van den Brink PJ (2006) Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem 25:2480–2489CrossRefGoogle Scholar
  31. Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643CrossRefGoogle Scholar
  32. Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758–3766CrossRefGoogle Scholar
  33. Gosset WS (1908) The probable error of a mean. Biometrika 6:1–25Google Scholar
  34. Herbst M, Van Esch GJ (1991) International programme on chemical safety, environmental health criteria. 124 Lindane. World Health Organization, GenevaGoogle Scholar
  35. Hommen U, Veith D, Dülmer U (1994) A computer program to evaluate plankton data of freshwater field tests. In: Hill IR, Heimbach F, Leeuwangh P, Matthiessen P (eds) Freshwater field tests for hazard assessment of chemicals. Lewis Publishers, Boca Raton, pp 503–513Google Scholar
  36. Hubert L, Tuckowa S (2003) The oribatid communities (Acari:Oribatida) on different stands of two meadows. Ekologia (Bratislava) 22:443–456Google Scholar
  37. Isnard P, Flammarion P, Roman G, Babut M, Bastien Ph, Bintein S, Essermeant L, Ferard JF, Gallotti-Schmitt S, Saouter E, Saroli M, Thiebaud H, Tomassone R, Vindimian E (2001) Statistical analysis of regulatory ecotoxicity tests. Chemosphere 45:659–669CrossRefGoogle Scholar
  38. ISO (2003A) ISO/DIS 23611-1: Hand-sorting and formaline extraction of earthworms. Soil quality-Sampling of soil invertebrates, ISO/DIS 23611-1Google Scholar
  39. ISO (2003B) Soil quality—sampling of soil invertebrates Part 2: sampling and extraction of microarthropods (Collembola and Acarina). ISO/DIS 23611-2Google Scholar
  40. Jager T (2011) Some good reasons to Ban Ecx and related concepts in ecotoxicology. Environ Sci Technol 45:8180–8181CrossRefGoogle Scholar
  41. Kennedy N, Clipson N (2003) Fingerprinting the fungal commmunity. Mycologist 17:158–164CrossRefGoogle Scholar
  42. Knacker T, Van Gestel CAM, Jones SE, Soares AMVM, Schallnaß H-J, Förster B, Edwards CA (2004) Ring-testing and field-validation of a terrestrial model ecosystem (TME)—an instrument for testing potentially harmful substances: conceptual approach and study design. Ecotoxicology 13:9–27CrossRefGoogle Scholar
  43. Laskowski R (1995) Some good reasons to ban the use of NOEC. LOEC Relat Concepts Ecotoxicol Oikos 73:140–144Google Scholar
  44. Liess M, Beketov M (2011) Traits and stress: keys to identify community effects of low levels of toxicants in test systems. Ecotoxicology 20:1328–1340CrossRefGoogle Scholar
  45. Lock K, De Schamphelaere KAC, Janssen CR (2002) The effect of lindane on terrestrial invertebrates. Arch Environ Contam Toxicol 42:217–221CrossRefGoogle Scholar
  46. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is larger than the other. Ann Math Stat 18:50–60CrossRefGoogle Scholar
  47. May LA, Smiley B, Schmidt MG (2001) Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can J Microbiol 47:829–841CrossRefGoogle Scholar
  48. Moser Th, Schallnaß HJ, Jones SE, Van Gestel CAM, Koolhaas JEE, Rodrigues JML, Römbke J (2004) Ring-testing and field-validation of a terrestrial model ecosystem (TME)—an instrument for testing potentially harmful substances: effects of carbendazim on nematodes. Ecotoxicology 13:61–74CrossRefGoogle Scholar
  49. Mulder C, Boit A, Bonkowski M, De Ruiter PC, Mancinelli G, Van Der Heijden MGA, Van Wijnen HJ, Vonk JA, Rutgers M (2011) A belowground perspective on Dutch agroecosystems: how soil organisms interact to support ecosystem services. In: Woodward G (ed) Advances in ecological research 44—ecosystems in a human-modified landscape: a European perspective. pp 277–357Google Scholar
  50. Murray AE, Hollibaugh JT, Orrego C (1996) Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl Environ Microbiol 62:2676–2680Google Scholar
  51. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  52. Neher DA (1999) Soil community composition and ecosystem processes: comparing agricultural ecosystems with natural ecosystems. Agrofor Syst 45:159–185CrossRefGoogle Scholar
  53. Nielsen CO, Christensen B (1959) The Enchytraeidae, critical revision and taxonomy of European species. Naturhistorisk Museum, AarhusGoogle Scholar
  54. OECD (2006) Guidance document on simulated freshwater lentic field tests (outdoor microcosms and mesocosms). OECD series on testing and assessment 53, OECD, ParisGoogle Scholar
  55. Oros-Sichler M, Gomes NCM, Neuber G, Smalla K (2005) A new semi-nested protocol to amplify large 18S rRNA gene fragments for PCR-DGGE analysis of soil fungal communities. J Microbiol Methods 65:63–75CrossRefGoogle Scholar
  56. Parmelee RW, Wentsel RS, Phillips CT, Simini M, Checkai RT (1993) Soil microcosm for testing the effects of chemical pollutants on soil fauna communities and trophic structure. Environ Toxicol Chem 12:1477–1486CrossRefGoogle Scholar
  57. Potapov M (2001) Synopses on Palearctic Collembola vol 3: Isotomidae. Abhandlungen und Berichte des Naturkundemuseum Görlitz 73:1–603Google Scholar
  58. Roß-Nickoll M, Lennartz G, Fürste A, Mause R, Ottermanns R, Schäfer S, Smolis M, Theissen B, Toschki A, Ratte HT (2004) Die Arthropodenfauna von Nichtzielflächen und die Konsequenzen für die Bewertung der Auswirkungen von Pflanzenschutzmitteln auf den terrestrischen Bereich des Naturhaushaltes. Umweltbundesamt (UBA), Berlin. FKZ 20063403Google Scholar
  59. Rumpler N (2007) Use of denaturing gradient gel-electrophoresis for the characterization of soil fungi communities in terrestrial model ecosystems. Diploma Thesis, Institute for Environmental Research, RWTH Aachen UniversityGoogle Scholar
  60. Rutgers M, Mulder C, Schouten AJ (eds) (2008) Soil ecosystem profiling in the Netherlands with ten references for biological soil quality. RIVM report 607604009/2008, National Institute for Public Health and the Environment (RIVM), BilthovenGoogle Scholar
  61. Schäffer A, van den Brink P, Heimbach F, Hoy S, de Jong F, Römbke J, Sousa JP, Ross-Nickoll M (2008) Semi-field methods are a useful tool for the environmental risk assessment of pesticides in soil. Environ Sci Pollut Res 50:176–177CrossRefGoogle Scholar
  62. Schäffer A, van den Brink PJ, Heimbach F, Hoy SP, de Jong FMW, Römbke J, Roß-Nickoll M, Sousa JP (2010) Semi-field methods for the environmental risk assessment of pesticides in soil. CRC Press, FloridaGoogle Scholar
  63. Scheu S (2002) The soil food web: structure and perspectives. Eur J Soil Biol 38:11–20CrossRefGoogle Scholar
  64. Schmelz RM (2003) Taxonomy of Fridericia (Oligochaeta, Enchytraeidae). Revision of species with morphological and biochemical methods. Abhandlungen der Naturwissenschaftlichen Vereinigung Hamburg (NF) 38:1–415Google Scholar
  65. Scholz-Starke B, Nikolakis A, Leicher T, Lechelt-Kunze C, Heimbach F, Theißen B, Toschki A, Ratte HT, Schäffer A, Roß-Nickoll M (2011) Outdoor terrestrial model ecosystems are suitable to detect pesticide effects on soil fauna: design and method development. Ecotoxicology 20:1932–1948CrossRefGoogle Scholar
  66. Shannon CE (1948) A mathematical theory of communication. Bell System Tech J 27(379–423):623–656Google Scholar
  67. Southey JF (1986) Laboratory methods for work with plant and soil nematodes. Reference book 402, 6th edn. Her Majesty’s Stationery Office, London, Ministry of Agriculture, Fisheries and FoodGoogle Scholar
  68. SPSS Inc. (2005) SPSS 14.0 for Windows SPSS Science Marketing Dept., Chicago, ILGoogle Scholar
  69. Stach J (1960) The Apterygotan fauna of Poland in relation to the world fauna of this group of insects. Orchesellini. Polska Akademia Nauk, Krakau, TribeGoogle Scholar
  70. Stach J (1963) The Apterygotan fauna of Poland in relation to the world fauna of this group of insects. Entomobryini. Polska Akademia Nauk, Krakau, TribeGoogle Scholar
  71. Stamou GP, Argyropoulou MD (1995) A preliminary study on the effect of Cu, Pb and Zn contamination of soils on community structure and certain life-history traits of oribatids from urban areas. Exp Appl Acarol 19:381–390CrossRefGoogle Scholar
  72. Strenzke K (1952) Untersuchungen über die Tiergemeinschaften des Bodens: Die Oribatiden und ihre Synusien in den Böden Norddeutschlands. Zoologica Stuttgart 104:1–173Google Scholar
  73. Swedish EPA (2002) Priority list for chemicals to LRTAP and SC: Annex 1 to the interim report. Governmental Commission, National Chemicals Inspectorate/Swedish EPAGoogle Scholar
  74. Ter Braak CJF, Smilauer P (1998) Canoco reference manual and user’s guide to Canoco for Windows. Software for canonical community ordination (version 4). Micro Computer Power. Ithaca, New YorkGoogle Scholar
  75. Thibaud JM, Schulz HJ, Da Gama Assalino MM (2004) Synopses on Palearctic Collembola, vol 4: Hypogastruridae. Abhandlungen und Berichte des Naturkundemuseum Görlitz 75:1–287Google Scholar
  76. Toschki A (2008) Eignung unterschiedlicher Monitoring-Methoden als Grundlage zum Risk-Assessment für Agrarsysteme: Am Beispiel einer biozönologischen Reihenuntersuchung und einer Einzelfallstudie. Phd Thesis, Institute for Environmental Research, RWTH-AachenGoogle Scholar
  77. ToxRat Pro Version 2.09 (2004), ToxRat Solutions GmbHGoogle Scholar
  78. Turbé A, De Toni A, Benito P, Lavelle P, Lavelle P, Ruiz N, Van der Putten WH, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, report for European Commission (DG Environment)Google Scholar
  79. Ulman E (1972) Lindane. Monograph of an Insecticide. Verlag K. Schillinger, Freiberg im BreisgauGoogle Scholar
  80. Van Bezooijen J (2006) Methods and techniques for nematology. International report of Nematology Department Wageningen. Revised version of the manualGoogle Scholar
  81. Van den Brink PJ, Ter Braak CJF (1997) Ordination of responses to toxic stress in experimental ecosystems. Toxicol Ecotoxicol News Rev 4:173–177Google Scholar
  82. Van den Brink PJ, Ter Braak CJF (1998) Multivariate analysis of stress in experimental ecosystems by principal response curves and similarity analysis. Aquat Ecol 32:163–178CrossRefGoogle Scholar
  83. Van den Brink PJ, Ter Braak CJF (1999) Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environ Toxicol Chem 18:138–148CrossRefGoogle Scholar
  84. Van den Brink PJ, Ter Braak CJF (2011) Response to ‘traits and stress: keys to identify community effects of low levels of toxicants in test systems’ by Liess and Beketov (2011). Ecotoxicology. doi: 10.1007/s10646-011-0825-8 Google Scholar
  85. Van den Brink PJ, Van Wijngaarden RPA, Lucassen WGH, Brock TCM, Leeuwangh P (1996) Effects of the insecticide Dursban 4E (active ingredient chlorpyrifos) in outdoor ditches: II. Invertebrate community responses and recovery. Environ Toxicol Chem 15:1143–1153Google Scholar
  86. Van der Linden AMA, Boesten JJTI, Brock TCM, Van Eekelen GMA, De Jong FMW, Leistra M, Montforts MHMM, Pol JW (2006) Persistence of plant protection products in soil; a proposal for risk assessment. RIVM report 601506008/2006Google Scholar
  87. Weigmann G (2006) Hornmilben (Oribatida) In: Dahl, Tierwelt Deutschlands 76. Goecke & Evers, KelternGoogle Scholar
  88. Weyers A, Schuphan I (1998) Variation of effect endpoint parameters in a terrestrial model ecosystem. Ecotoxicology 7:335–341CrossRefGoogle Scholar
  89. Weyers A, Sokull-Klüttgen B, Knacker T, Martin S, Van Gestel CAM (2004) Use of terrestrial model ecosystem data in environmental risk assessment for industrial chemicals, biocides and plant protection products in the EU. Ecotoxicology 13:163–176CrossRefGoogle Scholar
  90. Williams DA (1971) A test for differences between treatment means when several dose levels are compared with a zero dose control. Biometrics 27:103–117CrossRefGoogle Scholar
  91. Williams DA (1972) The comparison of several dose levels with a zero dose control. Biometrics 28:519–531CrossRefGoogle Scholar
  92. Willmann C (1931) Moosmilben oder Oribatiden (Cryptostigmata). In: Dahl F (ed) Die Tierwelt Deutschlands, Bd. 22, vol. 5, Gustav Fischer, Jena, pp 79–200Google Scholar
  93. Yeates GW, Barker GW, Pottinger RPAF (1983) Effects of Oxamyl and Carbofuran on nematode populations below 10 grass cultivars. New Zealand J Exp Agric 11:147–151CrossRefGoogle Scholar
  94. Zimdars B, Dunger W (1994) Synopses on Palearctic Collembola, vol 1: Tullbergiinae. Abhandlungen und Berichte des Naturkundemuseum Görlitz 68:1–71Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • B. Scholz-Starke
    • 1
  • A. Beylich
    • 2
  • T. Moser
    • 3
  • A. Nikolakis
    • 4
  • N. Rumpler
    • 5
  • A. Schäffer
    • 1
  • B. Theißen
    • 1
  • A. Toschki
    • 5
  • M. Roß-Nickoll
    • 1
  1. 1.Chair of Environmental Biology and Chemodynamics, Institute for Environmental Research (BioV), RWTH Aachen UniversityAachenGermany
  2. 2.IFAB Institut für Angewandte Bodenbiologie GmbHHamburgGermany
  3. 3.ECT Oekotoxikologie GmbHFlörsheim am MainGermany
  4. 4.Bayer CropScience AGMonheim am RheinGermany
  5. 5.gaiac Forschungsinstitut für Ökosystemanalyse und -bewertung e.V.AachenGermany

Personalised recommendations