Advertisement

Ecotoxicology

, Volume 21, Issue 8, pp 2338–2348 | Cite as

Influence of existing site contamination on sensitivity of Rhinella fernandezae (Anura, Bufonidae) tadpoles to Lorsban®48E formulation of chlorpyrifos

  • Celeste Ruiz de Arcaute
  • Carolina Salgado Costa
  • Pablo M. Demetrio
  • Guillermo S. Natale
  • Alicia E. Ronco
Article

Abstract

Effects of the widely employed insecticide Lorsban®48E formulation of chlorpyrifos (CPF) was studied on Rhinella fernandezae tadpoles, a native species of Argentina, Brazil, Paraguay and Uruguay, under the hypothesis of a differential response of organisms from ponds of two sites with different degree of anthropogenic disturbance: S1 an unpolluted area, and S2 area with high degree of antropogenic disturbance. To collect a representative sample of the genotypic variability of each population, small portions from six clutches were taken randomly from each site when the period of clutching was finished. Embryos and tadpoles were maintained under controlled laboratory conditions. Toxicity tests were conducted under standardized conditions to study acute and chronic lethal (mortality) and sublethal effects (behavior, growth, and abnormalities), within the range of concentrations of 0.010 to 5 mg/L. Chronic effects were assessed with organisms from one of the demes (S1). CPF showed high toxicity on the tadpoles, inducing lethal and sublethal effects at 96 h exposure within a narrow range of concentrations from 0.066 to 0.887 mg/L. Results indicate that R. fernandezae tadpoles are below the 30th percentile in the species sensitivity distribution of existing data. The acute LC50, NOEC, and LOEC values were 0.151, 0.066, and 0.133 mg/L for S1, and 0.293, 0.177, and 0.266 mg/L for S2, respectively. Considering all acute end-points evaluated, the effects of CPF showed no significant differences (p = 0.3484) between the studied populations. CPF has more severe effects at higher concentrations than at higher times of exposure. Contaminants in S2 do not seem to induce local adaptation. Sublethal effects data and measured environmental concentrations indicate potential risk for populations inhabiting agroecosystems.

Keywords

Chlorpyrifos Rhinella fernandezae Lethal effects Sublethal effects 

Notes

Acknowledgments

The authors acknowledge the assistance of Lara Sumiacher in the development of bioassays and maintenance of tadpoles, Dr. Abelardo Sztrum for providing some of the samples used in the study and Courtney Knipp for editorial suggestions. The study was funded by PICT0891 from the ANPCyT.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments performed in this study complied current ethical standards of Argentina.

References

  1. Abbasi SA, Soni R (1991) Evaluation of water quality criteria for four common pesticides on the basis of computer-aided studies. Indian J Environ Health 33(1):22–24Google Scholar
  2. Agostini MG, Natale GS, Ronco AE (2010) Lethal and sublethal effects of cypermethrin to Hypsiboas pulchellus tadpoles. Ecotoxicology 19(8):1545–1550CrossRefGoogle Scholar
  3. Allran JW, Karasov WH (2001) Effects of atrazine on embryos, larvae, and adults of anuran amphibians. Environ Toxicol Chem 20(4):769–775CrossRefGoogle Scholar
  4. Altig R, McDiarmid RW (1999) Body plan. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae, 1st edn. University of Chicago Press, Chicago, pp 24–51Google Scholar
  5. Bantle JA, Dumont JN, Finch RA, Linder G, Fort DJ (1996) Atlas of abnormalities. A guide for the performance of FETAX, 2nd edn. Oklahoma State University, StillwaterGoogle Scholar
  6. Barron MG, Woodburn KB (1995) Ecotoxicology of chlorpyrifos. Rev Environ Contam Toxicol 144:1–93CrossRefGoogle Scholar
  7. Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology. Biol Conserv 125:271–285CrossRefGoogle Scholar
  8. Berrill M, Bertrama S, Wilson A, Louis S, Brighaman D, Stromberg C (1993) Lethal and sublethal impacts of pyrethroid insecticides on amphibian embryos and tadpoles. Environ Toxicol Chem 12:525–539CrossRefGoogle Scholar
  9. Blaunstein AR, Kiesecker JM (2002) Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5:597–608CrossRefGoogle Scholar
  10. Bleyl DW (1980) Embryotoxicity and teratogenicity of phosmet in mice. Arch Exp Veterinarmed 34:791–795Google Scholar
  11. Bonfanti P, Colombo A, Orsi F, Nizzetto I, Andrioletti M, Bacchetta R, Mantecca P, Fascio U, Vailati G, Vismara C (2004) Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development. Aquat Toxicol 70:189–200CrossRefGoogle Scholar
  12. Bridges CM (1997) Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl. Environ Toxicol Chem 16(9):1935–1939CrossRefGoogle Scholar
  13. Brunelli E, Bernabo I, Berg C, Lundstedt-Enkel K, Bonacci A, Tripepi S (2009) Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles. Aquat Toxicol 91:135–142CrossRefGoogle Scholar
  14. Calumpang SMF, Medina MJB, Tejada AW, Medina JR (1997) Toxicity of chlorpyrifos, fenubucarb, monocrotophos, and methyl parathion to fish and frogs after a simulated overflow of paddy water. Bull Environ Contam Toxicol 58:909–914CrossRefGoogle Scholar
  15. Cappello VY, Fortunato N (2008) Plaguicidas en la Provincia de Buenos Aires: información toxicológica, ecotoxicológica y aspectos ambientales. Programa Gestión Ambiental en Agroecosistemas. Dirección Provincial de Recursos Naturales. Organismo Provincial para el Desarrollo Sostenible, p 1–146Google Scholar
  16. Carroll SP, Hendry AP, Reznick DN et al (2007) Evolution on ecological time-scales. Funct Ecol 21(3):387–393CrossRefGoogle Scholar
  17. Casabé N, Piola L, Fuchs J, Oneto ML, Pamparato L, Basack S, Giménez R, Massaro R, Papa JC, Kesten E (2007) Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field. J Soils Sediments 7(4):232–239CrossRefGoogle Scholar
  18. CASAFE (2011) Guía de productos fitosanitarios. Cámara de Sanidad Agropecuaria y Fertilizantes. Ciudad Autónoma de Buenos Aires, Argentina. http://www.casafe.org/recetario/fitosanitarios.php. Accesed 06 May 2011
  19. Cei JM (1980) Amphibians of Argentina. Monit Zool Italiano, Ital J Zool MonogrGoogle Scholar
  20. Coors A, Vanoverbeke J, De Bie T, De Meester L (2009) Land use, genetic diversity and toxicant tolerance in natural populations of Daphnia magna. Aquat Toxicol 95:71–79CrossRefGoogle Scholar
  21. Cowman DF, Manzanti LE (2000) Ecotoxicology of ‘‘new generation’’ pesticides to amphibians. In: Sparling D, Linder G, Bishop C (eds) Ecotoxicology of amphibians and reptiles. SETAC Technical Publication, Series, pp 233–268Google Scholar
  22. Decree 831/92 (1993) Hazardous Waste Law 24051/91. Official Bulletin of the Republic of Argentina, Buenos Aires, pp 4–22Google Scholar
  23. Egea-Serrano A, Tejedo M, Torralva M (2009) Populational divergence in the impact of three nitrogenous compounds and their combination on larvae of the frog Pelophylax perezi (Seoane, 1885). Chemosphere 76(7):869–877CrossRefGoogle Scholar
  24. Finney DJ (1971) Probit analysis. Cambridge University Press, LondonGoogle Scholar
  25. Fort DJ, Guiney PD, Weeks JA, Thomas JH, Rogers RL, Noll AM, Spaulding CD (2004) Effect of methoxychlor on various life stages of Xenopus laevis. Toxicol Sci 81:454–466CrossRefGoogle Scholar
  26. Gaizick L, Gupta G, Bass E (2001) Toxicity of chlorpyrifos to Rana pipiens embryos. Bull Environ Contam Toxicol 66:386–391CrossRefGoogle Scholar
  27. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetology 16:183–190Google Scholar
  28. Greulich K, Pflugmacher S (2003) Differences in susceptibility of various life stages of amphibians to pesticide exposure. Aquat Toxicol 65(3):329–336CrossRefGoogle Scholar
  29. Gurushankara HP, Krishnamurthy SV, Vasudev V (2007) Effect of malathion on survival, growth, and food consumption of Indian cricket frog (Limnonectus limnocharis) tadpoles. Arch Environ Contam Toxicol 52:251–256CrossRefGoogle Scholar
  30. Houlahan JF, Findlay CS, Schmidt BR, Meyer AH, Kuzmink SL (2000) Quantitative evidence for global amphibian population declines. Nature 404(6779):752–755CrossRefGoogle Scholar
  31. Ingermann RL, Bencic DC, Verrell P (2002) Methoxychlor alters the predator-prey relationship between dragonfly naiads and salamander larvae. Bull Environ Contam Toxicol 68:771–778CrossRefGoogle Scholar
  32. Jergentz S, Mugni H, Bonetto C, Schulz R (2005) Assesment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere 61:817–826CrossRefGoogle Scholar
  33. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241CrossRefGoogle Scholar
  34. Krieger R (2010) Hayes’ handbook of pesticide toxicology, 3rd edn. Academic Press, OrlandoGoogle Scholar
  35. Krishnamurthy SV, Smith GR (2010) Growth, abnormalities, and mortality of tadpoles of American toad exposed to combinations of malathion and nitrate. Environ Toxicol Pollut 29(12):2777–2782Google Scholar
  36. Krishnamurthy SV, Smith GR (2011) Combined effects of malathion and nitrate on early growth, abnormalities, and mortality of wood frog (Rana sylvatica) tadpoles. Ecotoxicology 20(6):1361–1367CrossRefGoogle Scholar
  37. Linder G, Krest S, Sparling D (2003) Amphibian decline: an integrated analysis of multiple stressor effects. SETAC Press, PensacolaGoogle Scholar
  38. Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157(11):2903–2927CrossRefGoogle Scholar
  39. Marbán L, De López-Camelo LG, Ratto S, Agostini A (1999) Contaminación con metales pesados en un suelo de la cuenca del río reconquista. Aust J Ecol 9:15–19Google Scholar
  40. Marino D, Ronco A (2005) Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol 75:820–826CrossRefGoogle Scholar
  41. Marquis O, Miaud C (2008) Variation in UV sensitivity among common frog Rana temporaria populations along an altitudinal gradient. Zoology 111(4):309–317CrossRefGoogle Scholar
  42. Marquis O, Miaud C, Ficetola GF, Boscher A, Mouchet F, Guittonneau S, Devaux A (2009) Variation in genotoxic stress tolerance among frog populations exposed to UV and pollutant gradients. Aquat Toxicol 95(2):152–161CrossRefGoogle Scholar
  43. Mazanti LE, Rice C, Bialek K, Sparling D, Stevenson C, Johnson WE, Kangas P, Rheinstein J (2003) Aqueous-phase disappearance of atrazine, metolachlor, and chlorpyrifos in laboratory aquaria and outdoor macrocosms. Arch Environ Contam Toxicol 44:67–76CrossRefGoogle Scholar
  44. Meiniel R (1981) Neuromuscular blocking agents and axial teratogenesis in the avian embryo. Can axial morphogenetic disorders be explained by pharmacological action upon muscle tissue? Teratology 23:259–271CrossRefGoogle Scholar
  45. Miaud C, Oromí N, Navarro S, Sanuy D (2011) Intra-specific variation in nitrate tolerance in tadpoles of the Natterjack toad. Ecotoxicology 20:1176–1183CrossRefGoogle Scholar
  46. Moore MT, Schulz R, Cooper CM, Smith S Jr, Rodgers JH Jr (2002) Mitigation of chlorpyrifos runoff using constructed wetlands. Chemosphere 46:827–835CrossRefGoogle Scholar
  47. Moulton CA (1996) Assessing effects of pesticides on frog populations. Dissertation. North Carolina State University, RaleighGoogle Scholar
  48. Narvaes P, Kwet AP, Silvano DA, Lavilla ED, Langone JE (2004) Rhinella fernandezae. In: IUCN 2010. IUCN red list of threatened species. Version 2010.4. www.iucnredlist.org. Accessed on 02 May 2011
  49. Natale GS (2006) Análisis ecotoxicológico de una comunidad de anuros de la región pampeana: efecto del Cr(VI) Sobre embriones y larvas de distintas especies de una taxocomunidad. Dissertation. Universidad Nacional de La Plata, Buenos AiresGoogle Scholar
  50. Natale GS, Ammassari LL, Basso NG, Ronco AE (2006) Acute and chronic effects of Cr(VI) on Hypsiboas pulchellus embryos and tadpoles. Dis Aquat Org 72:261–267CrossRefGoogle Scholar
  51. Newman MC, Unger MA (2003) Fundamentals of Ecotoxicology, 2nd edn. Lewis, Boca RatonGoogle Scholar
  52. Ortiz-Santaliestra ME, Fernandez-Benitez MJ, Lizana M, Marco A (2010) Adaptation to osmotic stress provides protection against ammonium nitrate in Pelophylax perezi embryos. Environ Pollut 158:934–940CrossRefGoogle Scholar
  53. Pechman JH, Wake DB (1997) Declines and disappearances of amphibian populations. In: Meffe GK, Carrol CR (eds) Principles of conservation biology, 2nd edn. Sinauer, Sunderland, pp 135–137Google Scholar
  54. Perkins PJ, Boermans HJ, Stephenson GR (2000) Toxicity of glyphosate and triclopyr using the frog embryo teratogenesis assay–Xenopus. Environ Toxicol Chem 19(4):940–945Google Scholar
  55. PNUMA (1998) Decisión 18/32 del Consejo de administración del programa de las Naciones UNEP, 1999ª. Elaboración de criterios de base científica y de un procedimiento para identificar otros contaminantes orgánicos persistentes que puedan someterse a medidas internacionales futuras. http://www.pops.int/documents/meetings/ceg2/sp/ceg22s.html. Accessed June 2011
  56. Punzo F, Parker M (2005) Effects of azadirachtin on mortality, fertilization, and swimming speed in larvae of the cane toad, Bufo marinus (anura: Bufonidae). J Environ Biol 26(4):687–691Google Scholar
  57. Rand GR (ed) (1995) Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment, 2nd edn. Taylor and Francis, North Palm Beach, Florida Google Scholar
  58. Rehage JS, Lynn SG, Hammond JI, Palmer BD, Sih A (2002) Effects of larval exposure to triphenyltin on the survival, growth, and behavior of larval and juvenile Ambystoma barbouri salamanders. Environ Toxicol Chem 21:807–815Google Scholar
  59. Relyea RA (2009) A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159:363–376CrossRefGoogle Scholar
  60. Richards SM (2000) Chlorpyrifos: exposure and effects in passerines and anurans. Dissertation. Graduate Faculty of Texas Tech University, TexasGoogle Scholar
  61. Richards SM, Kendall RJ (2002) Biochemical effects of chlorpyrifos on two developmental stages of Xenopus laevis. Environ Toxicol Chem 21(9):1826–1835Google Scholar
  62. Richards SM, Kendall RJ (2003) Physical effects of chlorpyrifos on two stages of Xenopus laevis. J Toxicol Environ Health Part A 66:75–91CrossRefGoogle Scholar
  63. Robinson EC, Hammond BG, Johannsen FR, Levinskas GJ, Rodwell DE (1986) Teratogenicity studies of alkylaryl phosphate ester plasticizers in rats. Fundam Appl Toxicol 7:138–143CrossRefGoogle Scholar
  64. Ronco A, Peluso L, Jurado M, Bulus Rossini G, Salibián A (2008a) Screening of sediment pollution in tributaries from the southwestern coast of the Río de la Plata estuary. Lat Am J Sedimentol Basin Anal 15:67–75Google Scholar
  65. Ronco A, Carriquiriborde P, Natale GS, Martin ML, Mugni H, Bonetto C (2008b) Integrated approach for the assessment of biotech soybean pesticides impact on low order stream ecosystems of the Pampasic region. In: Chen J, Guo C (eds) Ecosystem ecology research developments. Nova Science, New York, pp 209–239Google Scholar
  66. Rovedatti MG, Castané PM, Topalián ML, Salibián A (2001) Monitoring of organochlorine and organosphosphorus pesticides in the water of the Reconquista river (Buenos Aires, Argentina). Water Res 35(14):3457–3461CrossRefGoogle Scholar
  67. Ruckman SA, Green OP, Palmer AK, Klimisch HJ (1999) Tri-isobutylphosphate: a prenatal toxicity study in rats. Toxicol Lett 105:231–237CrossRefGoogle Scholar
  68. Salibián A (2006) Ecotoxicological assessment of the highly polluted reconquista river of Argentina. Rev Environ Contam Toxicol 185:35–65CrossRefGoogle Scholar
  69. Snawder JE, Chambers JE (1989) Toxic and developmental effects of organophosphorus insecticides in embryos of the South African clawed frog. J Environ Sci Health 24(3):205–218CrossRefGoogle Scholar
  70. Snawder JE, Chambers JE (1990) Critical time periods and the effect of tryptophan in malathion-induced developmental defects in Xenopus embryos. Life Sci 46:1635–1642CrossRefGoogle Scholar
  71. Snawder JE, Chambers JE (1993) Osteolathyrogenic effects of malathion in Xenopus embryos. Toxicol Appl Pharmacol 121:210–216CrossRefGoogle Scholar
  72. Sparling DW, Fellers GM, McConnell L (2001) Pesticides and amphibian population declines in California, USA. Environ Toxicol Chem 20:1591–1595CrossRefGoogle Scholar
  73. Sparling DW, Krest SK, Linder G (2003) Multiple stressors and declining amphibian populations: an integrated analysis cause-effect to support adaptative resource management. In: Linder G, Krest SK, Sparling DW (eds) Amphibian decline: an integrated analysis of multiple stressor effects. SETAC, PensacolaGoogle Scholar
  74. Sparling DW, Linder G, Bishop CA, Krest SK (2010) Ecotoxicology of amphibians and reptiles, 2nd edn. SETAC, PensacolaCrossRefGoogle Scholar
  75. Sprague JB (1995) Factors that modify toxicity. In: Rand GM (ed) Fundamentals of aquatic toxicology:effects, environmental fate and risk assessment, 2nd edn. Taylor & Francis, London, pp 1012–1051Google Scholar
  76. Stebbins RC, Cohen NW (1995) A natural history of amphibians. Princeton University Press, PrincetonGoogle Scholar
  77. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306(5702):1783–1786CrossRefGoogle Scholar
  78. Sumanadasa DM, Mayuri R, Wijesinghe Ratnasooriya WD (2008) Effects of diazinon on survival and growth of two amphibian larvae. J Natl Sci Found Sri Lanka 36(2):165–169Google Scholar
  79. USEPA (1986) Test methods for evaluating solid waste, vol I, sec. B, method 3500 (Organic extraction and sample preparation), method 3550 (Sonication extraction procedure) and 3620 (Clean-up procedure), SW-846. United States Environmental Protection Agency, Washington DCGoogle Scholar
  80. USEPA (1989) Short-Term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. Cincinnati: EPA/600/4-89/001Google Scholar
  81. USEPA (1999) Reregistration eligibility science chapter for chlorpyrifos: fate and environmental risk assessment chapter. Docket control number OPP-34203 (0030). Washington DCGoogle Scholar
  82. USEPA (2002) Interim reregistration eligibility decision for chlorpyrifos. http://www.epa.gov/pesticides/reregistration/REDs/chlorpyrifos_ired.pdf. Accessed June 2011
  83. USEPA (2011) Ecotox: aquatic report. http://cfpub.epa.gov/ecotox/report.cfm?type=short. Accessed 27 April 2011
  84. Vapnarsky CA (2000) La aglomeración gran Buenos Aires, expansión espacial y crecimiento demográfico entre 1869 y 1991. EUDEBA, Buenos AiresGoogle Scholar
  85. Varó I, Serrano R, Pitarch E, Amat F, López FJ, Navarro JC (2000) Toxicity and bioconcentration of chlorpyrifos in aquatic organisms: Artemia parthenogenetica (Crustacea), Gambusia affinis, and Aphanius iberus (Pisces). Bull Environ Contam Toxicol 65:623–630CrossRefGoogle Scholar
  86. Vera Candioti J, Natale GS, Soloneski S, Ronco AE, Larramendy ML (2010) Sublethal and lethal effects on Rhinella Arenarum (Anura, Bufonidae) tadpoles exerted by the pirimicarb-containing technical formulation insecticide Aficida®. Chemosphere 78:249–255CrossRefGoogle Scholar
  87. Villar C, Tudino M, Bonetto C, de Cabo L, Stripeikis J, d’Huicque L, Troccoli O (1998) Heavy metal concentrations in the lower Paraná river and right margin of the Río de la plata estuary. Verh Internat Verein Limnol 26:963–966Google Scholar
  88. Vismara C, Alessandri S, Bonetti E, Garavaglia A, Bernardini G (1996) On the teratogenic mechanisms of malathion evaluated by FETAX. Ecotoxicology and environmental safety. In: proceedings of the fourth European conference. Metz, France, p 91Google Scholar
  89. Widder PD, Bidwell JR (2008) Tadpole size, cholinesterase activity, and swim speed in four frog species after exposure to sub-lethal concentrations of chlorpyrifos. Aquat Toxicol 88:9–18CrossRefGoogle Scholar
  90. Williams GC (1966) Adaptation and natural selection. Princeton University Press, PrincetonGoogle Scholar
  91. XiaoHui Y, GuoNian Z, Xian Bing L, ShaoYing L (2009) Genotoxicity evaluation of chlorpyrifos to amphibian Chinese toad (amphibian: Anura) by comet assay and micronucleus test. Mutat Res 680:2–6CrossRefGoogle Scholar
  92. Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Celeste Ruiz de Arcaute
    • 1
  • Carolina Salgado Costa
    • 1
  • Pablo M. Demetrio
    • 1
  • Guillermo S. Natale
    • 1
  • Alicia E. Ronco
    • 1
  1. 1.Centro de Investigaciones del Medio Ambiente, Departamento de Química, Facultad de Ciencias ExactasUniversidad Nacional de La Plata-CONICETLa PlataArgentina

Personalised recommendations