Ecotoxicology

, Volume 21, Issue 8, pp 2306–2318

Risk of herbicide mixtures as a key parameter to explain phytoplankton fluctuation in a great lake: the case of Lake Geneva, Switzerland

  • Vincent Gregorio
  • Lucie Büchi
  • Orlane Anneville
  • Frédéric Rimet
  • Agnès Bouchez
  • Nathalie Chèvre
Article
  • 347 Downloads

Abstract

Mixture risk assessment predictions have rarely been confronted with biological changes observed in the environment. In this study, long-term monitoring of a European great lake, Lake Geneva, provides the opportunity to assess to what extent the predicted toxicity of herbicide mixtures explains the changes in the composition of the phytoplankton community next to other classical limnology parameters such as nutrients. To reach this goal, the gradient of the mixture toxicity of 14 herbicides regularly detected in the lake was calculated using concentration addition and response addition models. A temporal gradient of toxicity was observed which decreased from 2004 to 2009. Redundancy analysis and partial redundancy analysis showed that this gradient explains a significant portion of the variation in phytoplankton community composition with and without having removed the effect of all other co-variables. Moreover, species that are significantly influenced, positively or negatively, by the decrease of toxicity in the lake over time are highlighted. It can be concluded that the herbicide mixture toxicity is one of the key parameters to explain phytoplankton changes in Lake Geneva.

Keywords

Microalgae Mixture toxicity Pesticides Risk assessment Redundancy analysis 

References

  1. AGRITOX (2012) Database for pesticides. http://www.dive.afssa.fr/agritox/index.php. Accessed August 2011
  2. Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M, Horst Grimme L (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: mixtures composed of similarly acting chemicals. Environ Toxicol Chem 19(9):2341–2347. doi:10.1002/etc.5620190926 Google Scholar
  3. Anneville O, Ginot V, Druart JC, Angeli N (2002) Long-term study (1974–1998) of seasonal changes in the phytoplankton in Lake Geneva: a multi-table approach. J Plankton Res 24(10):993–1008. doi:10.1093/plankt/24.10.993 CrossRefGoogle Scholar
  4. Barnthouse L (2008) The strengths of the ecological risk assessment process: linking science to decision making. Integr Environ Assess Manage 4(3):299–305. doi:10.1897/IEAM_2007-065.1 CrossRefGoogle Scholar
  5. Beketov MA, Liess M (2011) Ecotoxicology and macroecology: time for integration. Environ Pollut 162:247–254. doi:10.1016/j.envpol.2011.11.011 CrossRefGoogle Scholar
  6. Bérard A, Benninghoff C (2001) Pollution-induced community tolerance (PICT) and seasonal variations in the sensitivity of phytoplankton to atrazine in nanocosms. Chemosphere 45(4–5):427–437. doi:10.1016/S0045-6535(01)00063-7 CrossRefGoogle Scholar
  7. Bérard A, Leboulanger C, Pelte T (1999a) Tolerance of Oscillatoria limnetica Lemmermann to Atrazine in natural phytoplankton populations and in pure culture: influence of season and temperature. Arch Environ Contam Toxicol 37(4):472–479. doi:10.1007/s002449900541 CrossRefGoogle Scholar
  8. Bérard A, Pelte T, Druart JC (1999b) Seasonal variations in the sensitivity of Lake Geneva phytoplankton community structure to atrazine. Archiv für Hydrobiologie 145(3):277–295Google Scholar
  9. Bérard A, Dorigo U, Mercier I, Becker-Van Slooten K, Grandjean D, Leboulanger C (2003) Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva. Chemosphere 53(8):935–944. doi:10.1016/S0045-6535(03)00674-X CrossRefGoogle Scholar
  10. Chatterjee S, Hadi AS (2006) Regression analysis by example, 4th edn. Wiley., HobokenCrossRefGoogle Scholar
  11. Chèvre N, Gregorio V (2012) Interactions in ecotoxicology. In: Blaise C, Ferrard JF (eds) Comprehensive handbook of ecotoxicological terms, Elsevier, New York (In press)Google Scholar
  12. Chèvre N, Loepfe C, Singer H, Stamm C, Fenner K, Escher B (2006) Including mixtures in the determination of water quality criteria for herbicides in surface water. Environ Sci Technol 40(2):426–435. doi:10.1021/es050239l CrossRefGoogle Scholar
  13. Chèvre N, Loepfe C, Fenner K, Singer H, Escher B, Stamm C (2007) Pesticides in Swiss surface water : effect-based quality criteria. Gas Wasser Abwasser 7:529–539Google Scholar
  14. Chèvre N, Edder P, Ortelli D, Tatti E, Erkman S, Rapin F (2008) Risk assessment of herbicide mixtures in a large European lake. Environ Toxicol 23(2):269–277. doi:10.1002/tox.20337 CrossRefGoogle Scholar
  15. Corvi C, Zimmerli P, Ortelli D, Khim-Heang S, Becker-Van Slooten K (2005) Metals and micropollutants in the water, mussels and fish of lake Geneva. Report from CIPEL Campaign 2004, Changins, pp 55–78Google Scholar
  16. de Zwart D, Posthuma L (2005) Complex mixture toxicity for single and multiple species: proposed methodologies. Environ Toxicol Chem 24(10):2665. doi:10.1897/04-639R.1 CrossRefGoogle Scholar
  17. Debenest T, Silvestre J, Coste M, Pinelli E (2010) Effects of pesticides on freshwater diatoms. Rev Environ Contam Toxicol 203:87–103. doi:10.1007/978-1-4419-1352-4_2 CrossRefGoogle Scholar
  18. Druart JC (2007) The phytoplankton of lake Geneva. Report from CIPEL Campaign 2006, Changins, pp 83–92Google Scholar
  19. Druart JC, Rimet F (2008) Protocoles d’analyse du phytoplancton de l’INRA : prélèvement, dénombrement et biovolumes. Report from INRA, Thonon les BainsGoogle Scholar
  20. Druart JC, Rolland A, Tadonleke R (2005) Changes in the phytoplankton of lake Geneva. Report from CIPEL Campaign 2004, Changins, pp 79–89Google Scholar
  21. Druart JC, Robert M, Tadonleke R (2006) The phytoplankton of lake Geneva. Report from CIPEL Campaign 2005, Changins, pp 89–100Google Scholar
  22. eChemPortal (2011) The global portal to information on chemical substances. http://www.echemportal.org. Accessed August 2011
  23. ECOTOX (2012) The ecotoxicology database, U.S. Environmental Protection Agency. http://cfpub.epa.gov/ecotox. Accessed August 2011
  24. Edder P, Ortelli D, Ramseier S (2006) Metals and organic micropollutants. Report from CIPEL Campaign 2005, Changins, pp 65–87Google Scholar
  25. Edder P, Ortelli D, Ramseier S, Chèvre N (2007) Metals and organic micropollutants in Geneva lake waters. Report from CIPEL Campaign 2006, Changins, pp 59–81Google Scholar
  26. Edder P, Ortelli D, Klein A, Ramseier S (2008) Metals and organic micropollutants in Geneva lake waters and sediments. Report form CIPEL Campaign 2007, Changins, pp 57–84Google Scholar
  27. EFSA (2012) European Food Safety Authority. http://www.efsa.europa.eu/en/publications.htm. Accessed August 2011
  28. EN 15204 (2006) Water quality: guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl Technique). European Committee for Standardization, BrusselsGoogle Scholar
  29. European Commission (2003) Technical guidance document on risk assessment TGD. Part II. Institute for health and consumer protection, European Chemicals Bureau, European Commission (EC), IspraGoogle Scholar
  30. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Horst Grimme L (2003) Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquat Toxicol 63(1):43–63. doi:10.1016/S0166-445X(02)00133-9 CrossRefGoogle Scholar
  31. FOOTPRINT (2010) Functional tools for pesticide risk assessment and management. http://www.eu-footprint.org/ppdb.html. Accessed August 2011
  32. Hari RE, Livingstone DM, Siber R, Burkhardt-Holm P, Guttinger H (2006) Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams. Glob Change Biol 12:10–26. doi:10.1111/j.1365-2486.2005.001051.x CrossRefGoogle Scholar
  33. INERIS (2012) Institut national de l’environnement industriel et des risques. http://www.ineris.fr. Accessed August 2011
  34. Junghans M, Backhaus T, Faust M, Scholze M, Horst Grimme L (2003) Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Manag Sci 59(10):1101–1110. doi:10.1002/ps.735 CrossRefGoogle Scholar
  35. Kendall M (1955) Rank correlation methods, 2nd edn. Charles Griffin, LondonGoogle Scholar
  36. Knauer K, Leimgruber A, Hommen U, Knauert S (2010) Co-tolerance of phytoplankton communities to photosynthesis II inhibitors. Aquat Toxicol 96(4):256–263. doi:10.1016/j.aquatox.2009.11.001 CrossRefGoogle Scholar
  37. Kortenkamp A (2011) Setting the scene: is mixtures risk assessment necessary and feasible? 3rd SETAC Europe special science symposium, prospective and retrospective environmental risk assessment of mixtures: moving from research to regulation, BrusselsGoogle Scholar
  38. Kutner M, Nachtsheim C, Neter J (2004) Applied linear regression models, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  39. Lazzarotto J, Rapin F (2007) Physical-chemical changes in the waters of lake Geneva. Report from CIPEL Campaign 2006, Changins, pp 33–57Google Scholar
  40. Lazzarotto J, Rapin F (2008) Physical-chemical changes in the waters of lake Geneva. Report from CIPEL Campaign 2007, Changins, pp 31–55Google Scholar
  41. Lazzarotto J, Rapin F (2009) Physical-chemical changes in the waters of lake Geneva. Report from CIPEL Campage 2008, Changins, pp 33–58Google Scholar
  42. Lazzarotto J, Rapin F (2010) Physical-chemical changes in the waters of lake Geneva. Report from CIPEL Campaign 2009, Chanings, pp 31–56Google Scholar
  43. Lazzarotto J, Rapin F, Corvi C (2005) Physical-chemical changes in the waters of lake Geneva. Report from CIPEL Campaign 2004:31–53Google Scholar
  44. Lazzarotto J, Nirel P, Rapin F (2006) Physical-chemical changes in the waters of lake Geneva. Report from CIPEL Campaign 2005, Changins, Switzerland, pp 31-63 (in french)Google Scholar
  45. Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716 CrossRefGoogle Scholar
  46. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science B.V, AmsterdamGoogle Scholar
  47. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157(2):561–568. doi:10.1016/j.envpol.2008.09.020 CrossRefGoogle Scholar
  48. Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259CrossRefGoogle Scholar
  49. McClellan K, Altenburger R, Schmitt-Jansen M (2008) Pollution-induced community tolerance as a measure of species interaction in toxicity assessment. J Appl Ecol 45(5):1514–1522. doi:10.1111/j.1365-2664.2008.01525.x CrossRefGoogle Scholar
  50. Nyström B, Becker-Van Slooten K, Bérard A, Grandjean D, Druart JC, Leboulanger C (2002) Toxic effects of Irgarol 1051 on phytoplankton and macrophytes in Lake Geneva. Water Res 36(8):2020–2028. doi:10.1016/S0043-1354(01)00404-3 CrossRefGoogle Scholar
  51. OPP (2012) Pesticide ecotoxicity database. Integrated pest management. http://www.ipmcenters.org/Ecotox/dataaccess.cfm. Accessed August 2011
  52. Ortelli D, Edder P, Rapin F, Ramseier S (2009) Metals and organic micropollutants in Geneva lake waters. Report from CIPEL Campaign 2008, Changins, pp 59–71Google Scholar
  53. Ortelli D, Edder P, Rapin F, Ramseier S (2010) Metals and organic micropollutants in rivers and Geneva lake waters. Report from CIPEL Campaign 2009, Changins, pp 57–76Google Scholar
  54. Padisák J, Hajnal E, Krienitz L, Lakner J, Üveges V (2010) Rarity, ecological memory, rate of floral change in phytoplankton—and the mystery of the Red Cock. Hydrobiologia 653(1):45–64. doi:10.1007/s10750-010-0344-2 CrossRefGoogle Scholar
  55. Pannard A, Rouzic B, Binet F (2008) Response of phytoplankton community to low-dose atrazine exposure combined with phosphorus fluctuations. Arch Environ Contam Toxicol 57:50–59. doi:10.1007/s00244-008-9245-z CrossRefGoogle Scholar
  56. Pesce S, Bouchez A, Montuelle B (2011) Effects of organic herbicides on phototrophic microbial communities in freshwater ecosystems. Rev Environl Contam Toxicol 214:87–124. doi:10.1007/978-1-4614-0668-6_5 CrossRefGoogle Scholar
  57. Posthuma L, De Zwart D (2006) Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, rivers. Environ Toxicol Chem 25(4):1094–1105. doi:10.1897/05-305R.1 CrossRefGoogle Scholar
  58. Posthuma L, Suter GWI, Traas TP (2002) Species sensitivity distributions in ecotoxicology. Lewis Publishers, Boca RatonGoogle Scholar
  59. Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46(3):205–221Google Scholar
  60. Ricart M, Barceló D, Geiszinger A, Guasch H, López de Alda M, Romaní AM, Vidal G, Villagrasa M, Sabater S (2009) Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76(10):1392–1401. doi:10.1016/j.chemosphere.2009.06.017 CrossRefGoogle Scholar
  61. Rimet F (2010) The phytoplankton of lake Geneva. Report from CIPEL Campaign 2009, Changins, pp 77–88Google Scholar
  62. Rimet F, Druart JC (2009) The phytoplankton of lake Geneva. Report from CIPEL Campaign 2008, Changins, pp 91–102Google Scholar
  63. Rimet F, Druart JC, Moreau L (2008) The phytoplankton of lake Geneva. Report from CIPEL Campaign 2007, Changins, pp 85–95Google Scholar
  64. Rimet F, Druart JC, Anneville O (2009) Exploring the dynamics of plankton diatom communities in Lake Geneva using emergent self-organizing maps (1974–2007). Ecol Inf 4:99–110. doi:10.1016/j.ecoinf.2009.01.006 CrossRefGoogle Scholar
  65. Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077. doi:10.1126/science.1127291 CrossRefGoogle Scholar
  66. Tadonléké RD, Lazzarotto J, Anneville O, Druart JC (2009) Phytoplankton productivity increased in Lake Geneva despite phosphorus loading reduction. J Plankton Res 31(10):1179–1194. doi:10.1093/plankt/fbp063 CrossRefGoogle Scholar
  67. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  68. Van den Brink PJ, Rubach MN, Culp JM, Pascoe T, Maund SJ, Baird DJ (2011) Traits-based ecological risk assessment (TERA): realizing the potential of ecoinformatics approaches in ecotoxicology. Integr Environ Assess Manage 7(2):169–171. doi:10.1002/ieam.103 CrossRefGoogle Scholar
  69. Ward S, Augspurger T, Dwyer FJ, Kane C, Ingersoll CG (2007) Risk assessment of water quality in three North Carolina, USA, streams supporting federally endangered freshwater mussels (unionidae). Environ Toxicol Chem 26(10):2075–2085. doi:10.1897/06-561R.1 CrossRefGoogle Scholar
  70. Williams RJ, Keller VDJ, Johnson AC, Young AR, Holmes MGR, Wells C, Gross-Sorokin M, Benstead R (2009) A national risk assessment for intersex in fish arising from steroid estrogens. Environ Toxicol Chem 28(1):220–230. doi:10.1897/08-047.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Vincent Gregorio
    • 1
  • Lucie Büchi
    • 1
  • Orlane Anneville
    • 2
  • Frédéric Rimet
    • 2
  • Agnès Bouchez
    • 2
  • Nathalie Chèvre
    • 1
  1. 1.IMG, Faculty of Geosciences and EnvironmentUniversity of LausanneLausanneSwitzerland
  2. 2.INRA, UMR CARRTELThonon Les Bains CedexFrance

Personalised recommendations