Ecotoxicology

, Volume 21, Issue 8, pp 2222–2234 | Cite as

Pyrosequencing-based transcriptomic resources in the pond snail Lymnaea stagnalis, with a focus on genes involved in molecular response to diquat-induced stress

  • Anthony Bouétard
  • Céline Noirot
  • Anne-Laure Besnard
  • Olivier Bouchez
  • Damien Choisne
  • Eugénie Robe
  • Christophe Klopp
  • Laurent Lagadic
  • Marie-Agnès Coutellec
Article

Abstract

Due to their ability to explore whole genome response to drugs and stressors, omics-based approaches are widely used in toxicology and ecotoxicology, and identified as powerful tools for future ecological risk assessment and environmental monitoring programs. Understanding the long-term effects of contaminants may indeed benefit from the coupling of genomics and eco-evolutionary hypotheses. Next-generation sequencing provides a new way to investigate pollutants impact, by targeting early responses, screening chemicals, and directly quantifying gene expression, even in organisms without reference genome. Lymnaea stagnalis is a freshwater mollusk in which access to genomic resources is critical for many scientific issues, especially in ecotoxicology. We used 454-pyrosequencing to obtain new transcriptomic resources in L. stagnalis and to preliminarily explore gene expression response to a redox-cycling pesticide, diquat. We obtained 151,967 and 128,945 high-quality reads from control and diquat-exposed individuals, respectively. Sequence assembly provided 141,999 contigs, of which 124,387 were singletons. BlastX search revealed significant match for 34.6 % of the contigs (21.2 % protein hits). KEGG annotation showed a predominance of hits with genes involved in energy metabolism and circulatory system, and revealed more than 400 putative genes involved in oxidative stress, cellular/molecular stress and signaling pathways, apoptosis, and metabolism of xenobiotics. Results also suggest that diquat may have a great diversity of molecular effects. Moreover, new genetic markers (putative SNPs) were discovered. We also created a Ensembl-like web-tool for data-mining (http://genotoul-contigbrowser.toulouse.inra.fr:9095/Lymnaea_stagnalis/index.html). This resource is expected to be relevant for any genomic approach aimed at understanding the molecular basis of physiological and evolutionary responses to environmental stress in L. stagnalis.

Keywords

Ecotoxicology Pesticides Oxidative stress Transcriptomics Pyrosequencing Lymnaea stagnalis 

Supplementary material

10646_2012_977_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1179 kb)

References

  1. Adema CM, van Deutekom-Mulder EC, van der Knaap WP, Sminia T (1994) Schistosomial activities of Lymnaea stagnalis haemocytes: the role of oxygen radicals. Parasitology 109:479–485CrossRefGoogle Scholar
  2. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106CrossRefGoogle Scholar
  3. Anton PM, Theodorou V, Roy S, Fioramonti J, Bueno L (2002) Pathways involved in mild gastrointestinal inflammation induced by a low level of exposure to a food contaminant. Dig Dis Sci 47:1308–1315CrossRefGoogle Scholar
  4. Aung W, Hasegawa S, Furukawa T, Saga T (2007) Potential role of ferritin heavy chain in oxidative stress and apoptosis in human mesothelial and mesothelioma cells: implications for asbestos-induced oncogenesis. Carcinogenesis 28:2047–2052CrossRefGoogle Scholar
  5. Baraňano DE, Rao M, Ferris CD, Snyder SH (2002) Biliverdin reducatse: a major physiologic cytoprotectant. Proc Natl Acad Sci USA 99:16093–16098CrossRefGoogle Scholar
  6. Berberat PO, Katori M, Kaczmarek E, Anselmo D, Lassman C, Ke B, Shen X, Busuttil RW, Yamashita K, Csizmadia E, Tyagi S, Otterbein LE, Brouard S, Tobiasch E, Bach FH, Kupiec-Weglinski JW, Soares MP (2003) Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB 17:1724–1726Google Scholar
  7. Bickham JW (2011) The four cornerstones of evolutionary toxicology. Ecotoxicology 20:497–502CrossRefGoogle Scholar
  8. Breitholtz M, Ruden C, Hansson SO, Bengtsson BE (2006) Ten challenges for improved ecotoxicological testing in environmental risk assessment. Ecotoxicol Environ Saf 63:324–335CrossRefGoogle Scholar
  9. Brown CD, van Beinum W (2009) Pesticide transport via sub-surface drains in Europe. Environ Pollut 157:3314–3324CrossRefGoogle Scholar
  10. Byzitter J, Lukowiak K, Karnik V, Dalesman S (2012) Acute combined exposure to heavy metals (Zn, Cd) blocks memory formation in a freshwater snail. Ecotoxicology 21:860–868CrossRefGoogle Scholar
  11. Carter K, Lukowiak K, Schenk JO, Sorg BA (2009) Repeated cocaine effects on learning, memory and extinction in the pond snail Lymnaea stagnalis. J Exp Biol 209:4273–4282CrossRefGoogle Scholar
  12. Chaudière J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37:949–962CrossRefGoogle Scholar
  13. Coutellec MA, Barata C (2011) An introduction to evolutionary processes in ecotoxicology. Ecotoxicology 20:493–496CrossRefGoogle Scholar
  14. Coutellec MA, Caquet T (2011) Heterosis and inbreeding depression in bottlenecked populations: a test in the hermaphroditic freshwater snail Lymnaea stagnalis. J Evol Biol 24:2248–2257CrossRefGoogle Scholar
  15. Coutellec MA, Delous G, Cravedi JP, Lagadic L (2008) Effects of the mixture of diquat and a nonylphenol polyethoxylate adjuvant on fecundity and progeny early performances of the pond snail Lymnaea stagnalis in laboratory bioassays and microcosms. Chemosphere 73:326–336CrossRefGoogle Scholar
  16. Coutellec MA, Collinet C, Caquet T (2011) Parental exposure to pesticides and progeny reaction norm to a biotic stress gradient in the freshwater snail Lymnaea stagnalis. Ecotoxicology 20:534Google Scholar
  17. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824CrossRefGoogle Scholar
  18. Davison A, Blaxter ML (2005) An expressed sequence tag survey of gene expression in the pond snail Lymnaea stagnalis, an intermediate vector of trematodes [corrected]. Parasitology 130:539–552CrossRefGoogle Scholar
  19. Diwakar L, Ravindranath V (2007) Inhibition of cystathionine-g-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem Intern 50:418–426CrossRefGoogle Scholar
  20. Ducrot V, Péry ARR, Lagadic L (2010) Modelling effects of diquat under realistic exposure patterns in genetically differentiated populations of the gastropod Lymnaea stagnalis. Phil Trans R Soc B 365:3485–3494CrossRefGoogle Scholar
  21. Emmett K (2002) Final risk assessment for diquat bromide. Washington State Department of Ecology, Washington, DCGoogle Scholar
  22. Feng ZP, Zhang Z, van Kesteren RE, Straub VA, van Nierop P, Jin K, Nejatbakhsh N, Goldberg JL, Spencer GE, Yeoman MS, Wildering W, Coorssen JR, Croll RP, Buck LT, Syed NI, Smit AB (2009) Transcriptome analysis of the central nervous system of the mollusk Lymnaea stagnalis. BMC Genomics 10:451CrossRefGoogle Scholar
  23. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330:517–521CrossRefGoogle Scholar
  24. Han ES, Muller FL, Pérez VI, Qi W, Liang H, Xi L, Fu C, Doyle E, Hickey M, Cornell J, Epstein CJ, Roberts LJ, Van Remmen H, Richardson A (2008) The in vivo gene expression signature of oxidative stress. Physiol Genomics 34:112–126CrossRefGoogle Scholar
  25. Hendry AP, Farrugia TJ, Kinneson MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29CrossRefGoogle Scholar
  26. Hoffer JNA, Ellers J, Koene JM (2010) Costs of receipt and donation of ejaculates in a simultaneous hermaphrodite. BMC Evol Biol 10:393CrossRefGoogle Scholar
  27. Hoffmann AA, Hercus MJ (2000) Environmental stress as an evolutionary force. Bioscience 50:217–226CrossRefGoogle Scholar
  28. Jones GM, Vale JA (2000) Mechanisms of toxicity, clinical features, and management of diquat poisoning: a review. J Toxicol Clin Toxicol 38:123–128CrossRefGoogle Scholar
  29. Leroux S, Feve K, Vignoles F, Bouchez O, Klopp C, Noirot C, Gourichon D, Richard S, Leterrier C, Beaumont C, Minvielle F, Vignal A, Pitel F (2010) Non PCR-amplified Transcripts and AFLP(R)(R) fragments as reduced representations of the quail genome for 454 Titanium sequencing. BMC Res Notes 3:214CrossRefGoogle Scholar
  30. Mager WH, de Boer AH, Siderius MH, Voss HP (2000) Cellular responses to oxidative and osmotic stress. Cell Stress Chaperon 5:73–75CrossRefGoogle Scholar
  31. Mariette J, Noirot C, Klopp C (2011) Assessment of replicate bias in 454 pyrosequencing and a multi-purpose read-filtering tool. BMC Res Notes 4:149CrossRefGoogle Scholar
  32. Martyniuk CJ, Griffitt RJ, Denslow ND (2011) Omics in aquatic toxicology: not just another microarray. Environ Toxicol Chem 30:263–264CrossRefGoogle Scholar
  33. Monaghan P, Metcalfe NB, Torres R (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol Lett 12:75–92CrossRefGoogle Scholar
  34. Osburn WO, Wakabayashi N, Misra V, Nilles T, Biswal S, Trush MA, Kensler TW (2006) Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion. Arch Biochem Biophys 454:7–15CrossRefGoogle Scholar
  35. Oshlack A, Robinson MD, Yound MD (2010) From RNAseq to differential expression results. Genome Biol 11:220CrossRefGoogle Scholar
  36. Perkins EJ, Chipman JK, Edwards S, Habib T, Falciani F, Taylor R, Van Aggelen G, Vulpe C, Antczak P, Loguinov A (2011) Reverse engineering adverse outcome pathways. Environ Toxicol Chem 30:22–38CrossRefGoogle Scholar
  37. Pertea G, Huang XQ, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B et al (2003) TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652CrossRefGoogle Scholar
  38. Poulsen HE, Jensen BR, Weimann A, Sorensen Jensen SA, Loft M (2000) Antioxidants, DNA damage and gene expression. Free Radical Res 33:S33–S39Google Scholar
  39. Raes J, Letunic I, Yamada T, Jensen LJ, Bork P (2011) Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data. Mol Syst Biol 7:473CrossRefGoogle Scholar
  40. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907CrossRefGoogle Scholar
  41. Ritter AM, Shaw JL, Williams WM, Travis KZ (2000) Characterizing aquatic ecological risks from pesticides using a diquat dibromide case study. I. Probabilistic exposure estimates. Environ Toxicol Chem 19:749–759CrossRefGoogle Scholar
  42. Rodriguez-Gabriel MA, Watt S, Bähler J, Russel P (2006) Upf1, an RNA helicase required for nonsense-mediated mRNA decay, modulates the transcriptional response to oxidative stress in fission yeast. Mol Cell Biol 26:6347–6356CrossRefGoogle Scholar
  43. Rogers LK, Bates CM, Welty SE, Smith CV (2006) Diquat induces renal proximal tubule injury in glutathione reductase-deficient mice. Toxicol Appl Pharmacol 217:289–298CrossRefGoogle Scholar
  44. Russo J, Lefeuvre-Orfila L, Lagadic L (2007) Hemocyte-specific responses to the peroxidizing herbicide fomesafen in the pond snail Lymnaea stagnalis (Gastropoda, Pulmonata). Environ Pollut 146:420–427CrossRefGoogle Scholar
  45. Smith TB, Bernatchez L (2008) Evolutionary change in human-altered environments. Mol Ecol 17:1–8CrossRefGoogle Scholar
  46. Snape JR, Maund SJ, Pickford DB, Hutchinson TH (2004) Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat Toxicol 67:143–154CrossRefGoogle Scholar
  47. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HI (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAK pathways? J Signal Transduct: Article ID 792639. doi:10.1155/2011/792639
  48. Sun LY, Bokov AF, Richardson A, Miller RA (2011) Hepatic response to oxidative injury in long-lived Ames dwarf mice. FASEB 25:398–408CrossRefGoogle Scholar
  49. US Environmental Protection Agency (1995) R.E.D. Facts Diquat Bromide. National Center for Environmental Publications and Information, Cincinnati, OH 45242-0419 1995. Document EPA-738-F-95-015Google Scholar
  50. Van Straalen NM, Roelofs D (2008) Genomics technology for assessing soil pollution. J Biol 7:19CrossRefGoogle Scholar
  51. Vera IC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17:1636–1647CrossRefGoogle Scholar
  52. Villeneuve DL, Garcia-Reyero N (2011) Predictive ecotoxicology in the 21th century. Environ Toxicol Chem 30:1–8CrossRefGoogle Scholar
  53. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev Genet 10:57–63CrossRefGoogle Scholar
  54. Waring JF, Jolly RA, Ciurlionis R, Lum PK, Praestgaard JT, Morfitt DC, Buratto B, Roberts C, Schadt E, Ulrich RG (2001) Clustering of hepatotoxins based on mechanisms of toxicity using gene expression profiles. Toxicol Appl Pharmacol 175:28–42CrossRefGoogle Scholar
  55. Watanabe KH, Andersen ME, Basu N, Carvan MJ III, Crofton KM, King KA, Suňol C, Tiffany-Castiglioni E, Schultz IR (2011) Defining and modelling known adverse outcome pathways: domoic acid and neuronal signalling as a case study. Environ Toxicol Chem 30:9–21CrossRefGoogle Scholar
  56. Wood SA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Anthony Bouétard
    • 1
  • Céline Noirot
    • 2
  • Anne-Laure Besnard
    • 1
  • Olivier Bouchez
    • 3
  • Damien Choisne
    • 1
  • Eugénie Robe
    • 3
  • Christophe Klopp
    • 2
  • Laurent Lagadic
    • 1
  • Marie-Agnès Coutellec
    • 1
  1. 1.INRA, UMR0985 INRA-Agrocampus Ouest ESE, Equipe Ecotoxicologie et Qualité des Milieux AquatiquesRennes cedexFrance
  2. 2.Genotoul, Plateforme BioinformatiqueINRA Toulouse-AuzevilleCastanet TolosanFrance
  3. 3.Genotoul, Plateforme GénomiqueINRA UMR0444 LGC Toulouse-AuzevilleCastanet TolosanFrance

Personalised recommendations