, Volume 21, Issue 7, pp 1979–1988 | Cite as

Comparison of remote consequences in Taraxacum officinale seed progeny collected in radioactively or chemically contaminated areas

  • Vera N. PozolotinaEmail author
  • Elena V. Antonova
  • Victor S. Bezel


We carried out a comparative study of seed progeny taken from the dandelion (Taraxacum officinale s.l.) coenopopulations exposed for a long time to radioactive or chemical contamination originated from the East-Ural radioactive trace zone (EURT) or Nizhniy Tagil metallurgical combine impact zone (NTMC), respectively. Coenopopulations from EURT, NTMC and background areas significantly differ from each other with respect to the qualitative and quantitative composition of allozyme phenes. An analysis of clonal diversity showed the uniqueness of all coenopopulations in terms of their phenogenetics. P-generation seed viability was found to decrease in a similar manner as all types of the industrial stress increased. Studies of F 1-generation variability in radio- and metal resistance by family analysis showed that seed progeny from EURT impact zone possessed high viability that, however, was accompanied by development of latent injuries resulting in low resistance to additional man-caused impacts. In F 1-generation originated from NTMC zone, high seed viability was combined with increased resistance to provocative heavy metal and radiation exposure. No significant differences in responses to ‘habitual’ and ‘new’ factors, i.e. pre-adaptation effect, were found in samples from the contaminated areas.


Radiation Heavy metals Dandelion (Taraxacum officinale s.l.) Allozymes Viability Adaptation Transgeneration effect 



This work was done with financial support from Program of the oriented basic researches between Institutes of UB RAS with state corporations of the Russian Federation (project No 12-4-002-NC) and Program of the multidisciplinary researches between Institutes of UB RAS (project No 12-M-24-2016), the Federal Special Scientific & Technical Program in support of leading scientific schools (SS-5325.2012.4). We are indebted to Prof. Tatjana Zhu’kova, Dr. Olga A. Timokhina, junior researcher Elina M. Karimullina and engineer Tatjana Ye. Belyaeva for technical assistance. Helpful remarks of two anonymous reviewers are gratefully acknowledged.

Conflict of interests

The authors declare that they have no conflicts of interests.


  1. Aarkrog A, Dahlgaard H, Nielsen SP, Trapeznikov AV, Molchanova IV, Pozolotina VN, Karavaeva EN, Yushkov PI, Polikarpov GG (1997) Radioactive inventories from the Kyshtym and Karachay accidents: estimates based on soil samples collected in the South Urals (1990–1995). Sci Total Environ. doi: 10.1016/S0048-9697(97)00098-3 Google Scholar
  2. Abramov VI, Fedorenko OM, Shevchenko VA (1992) Genetic consequences of radioactive contamination for populations of Arabidopsis. Sci Total Environ. doi: 10.1016/0048-9697(92)90234-J Google Scholar
  3. Altukhov YP (ed) (2005) Intraspecific genetic diversity: monitoring, conservation, and management. Springer, BerlinGoogle Scholar
  4. Antonova EV, Pozolotina VN (2007) Specific features of the allozyme structure of dandelion populations under conditions of radionuclide and chemical contamination. Russ J Ecol. doi: 10.1134/S1067413607050062 Google Scholar
  5. Beresford NA, Wright SM, Barnett CL, Hingston JL, Vives i Batlle J, Copplestone D, Kryshev II, Sazykina TG, Prohl G, Arkhipov A, Howard BJ (2005) A case study in the Chernobyl zone Part 2: predicting radiation induced effects in biota. Radioprotection. doi:10.1051/radiopro:2005s1-045
  6. Bezel’ VS, Pozolotina VN, Bel’skii EA, Zhuikova TV (2001) Variation in population parameters: adaptation to toxic environmental factors. Russ J Ecol. doi: 10.1023/A:1012534201258 Google Scholar
  7. Burlakova EB, Mikhailov VF, Mazurik VK (2001) The redox homeostasis system in radiation-induced genomic instability. Radiats Biol Radioecol 41(5):489–499Google Scholar
  8. Chen YP, Li R, He JM (2011) Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings. Ecotoxicology. doi: 10.1007/s10646-011-0620-6 Google Scholar
  9. Chenal C, Zaka R, Legue F, Misset MT (2006) Effects of low-dose irradiation on two plant models: stipa capillata and Pisum sativum. Int J Low Rad. doi: 10.1504/IJLR.2006.012023 Google Scholar
  10. Evseeva TI, Belykh ES, Maistrenko TA (2005) The activation mechanism of the plants cytogenetic effects after influence on heavy metals. Vestn Inst Biol Komi SC UD RAS 1:2–11Google Scholar
  11. Fuma S, Ishii N, Takeda H, Miyamoto K, Yanagisawa K, Ichimasa Y, Saito M, Kawabata Z, Polikarpov GG (2003) Ecological effects of various toxic agents on the aquatic microcosm in comparison with acute ionizing radiation. J Environ Radioact. doi: 10.1016/S0265-931x(02)00143-1 Google Scholar
  12. Gardeström J, Dahl U, Kotsalainen O, Maxson A, Elfwing T, Grahn M, Bengtsson BE, Breitholtz M (2008) Evidence of population genetic effects of long-term exposure to contaminated sediments—a multi-endpoint study with copepods. Aquat Toxicol. doi: 10.1016/j.aquatox.2007.12.003 Google Scholar
  13. Geras’kin S, Oudalova A, Dikareva N, Spiridonov S, Hinton T, Chernonog E, Garnier-Laplace J (2011) Effects of radioactive contamination on Scots pines in the remote period after the Chernobyl accident. Ecotoxicology. doi: 10.1007/s10646-011-0664-7 Google Scholar
  14. Geraskin SA, Dikarev VG, Zyablitskaya YY, Oudalova AA, Spirin YV, Alexakhin RM (2003) Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops. J Environ Radioact. doi: 10.1016/S0265-931x(02)00121-2 Google Scholar
  15. Geras’kin SA, Kim JK, Dikarev VG, Oudalova AA, Dikareva NS, Spirin YV (2005) Cytogenetic effects of combined radioactive (Cs-137) and chemical (Cd, Pb, and 2,4-D herbicide) contamination on spring barley intercalary meristem cells. Mutat Res Genetic Toxicol Environ Mutagen. doi: 10.1016/j.mrgentox.2005.06.004
  16. Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. North Holland, AmsterdamGoogle Scholar
  17. Hine GJ, Brownell GL (eds) (1956) Radiation dosimetry. Academic Press, New YorkGoogle Scholar
  18. Kashin AS, Anfalov VE, Demochko YA (2005) Studying allozyme variation in sexual and apomictic Taraxacum and Pilosella (Asteraceae) populations. Russ J Genet 41(2):144–154CrossRefGoogle Scholar
  19. Keane B, Collier MH, Rogstad SH (2005) Pollution and genetic structure of North American populations of the common dandelion (Taraxacum officinale). Environ Monit Assess. doi: 10.1007/s10661-005-4333-2 Google Scholar
  20. Kozlov MV, Zvereva EL (2004) Reproduction of mountain birch along a strong pollution gradient near Monchegorsk, Northwestern Russia. Environ Pollut. doi: 10.1016/j.envpol.2004.05.018 Google Scholar
  21. Kranz AR (1994) Heavy-ion and cosmic-radiation effects in different targets of the Arabidopsis seed. Acta Astronaut 33:201–210CrossRefGoogle Scholar
  22. Little JB (1998) Radiation-induced genomic instability. Int J Radiat Biol 74(6):663–671CrossRefGoogle Scholar
  23. Longauer R, Gömöry D, Paule L, Blada I, Popescu F, Mankovska B, Muller-Starck G, Schubert R, Percy K, Szaro RC, Karnosky DF (2004) Genetic effects of air pollution on forest tree species of the Carpathian Mountains. Environ Pollut. doi: 10.1016/j.envpol.2003.10.023 Google Scholar
  24. Meirmans PG, Vlot EC, Den Nijs JCM, Menken SBJ (2003) Spatial ecological and genetic structure of a mixed population of sexual diploid and apomictic triploid dandelions. J Evol Biol 16(2):343–352CrossRefGoogle Scholar
  25. Misik M, Micieta K, Solenska M, Misikova K, Pisarcikova H, Knasmuller S (2007) In situ biomonitoring of the genotoxic effects of mixed industrial emissions using the Tradescantia micronucleus and pollen abortion tests with wild life plants: demonstration of the efficacy of emission controls in an eastern European city. Environ Pollut. doi: 10.1016/j.envpol.2006.04.026 Google Scholar
  26. Molchanova IV, Pozolotina VN, Karavaeva EN, Mikhailovskaya LN, Antonova EV, Antonov KL (2009) Radioactive inventories within the East-Ural radioactive state reserve on the Southern-Urals. Radioprotection. doi: 10.1051/radiopro/20095136 Google Scholar
  27. Molinier J, Oakeley EJ, Niederhauser O, Kovalchuk I, Hohn B (2005) Dynamic response of plant genome to ultraviolet radiation and other genotoxic stresses. Mutat Res. doi: 10.1016/j.mrfmmm.2004.09.016
  28. Newcombe RG (1998) Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med. doi: 10.1002/(SICI)1097-0258(19980430 Google Scholar
  29. Nikipelov BV, Romanov GN, Buldakov LA, Babaev NS, Kholina YB, Mikerin EI (1989) A radiation accident in the Southern Urals in 1957. Atom Energy. doi: 10.1007/BF01125250 Google Scholar
  30. Pareek A, Sopory SK, Bohnert HJ, Govendjee (eds) (2010) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, DordrechtGoogle Scholar
  31. Parkes TL, Hilliker AJ, Phillips JP (1993) Genetic and biochemical analysis of glutathione-s-transferase in the oxygen defense system of Drosophila melanogaster. Genome 36(6):1007–1014CrossRefGoogle Scholar
  32. Peacock AC, Bunting SL, Queen KG (1965) Serum protein electrophoresis in acrylamide gel: patterns from normal human subjects. Science. doi: 10.1126/science.147.3664.1451 Google Scholar
  33. Pozolotina VN (2003) Remote effect of irradiation on a heterogenesis of apomictic plants. Radiats Biol Radioecol 43(4):443–451Google Scholar
  34. Pozolotina VN, Antonova EV, Bezel’ VS, Zhuikova TV, Severyukhina OA (2006) Pathways of adaptation of common dandelion cenopopulations to long-term chemical and radiation influences. Russ J Ecol. doi: 10.1134/S1067413606060063 Google Scholar
  35. Pozolotina VN, Antonova EV, Bezel’ VS (2009) Intrapopulation variation in the quality of dandelion seed progeny in zones of chemical and radioactive contamination. Russ J Ecol. doi: 10.1134/S1067413609050099 Google Scholar
  36. Pozolotina VN, Molchanova IV, Karavaeva EN, Mikhaylovskaya LN, Antonova EV (2010) Radionuclides in terrestrial ecosystems of the zone of Kyshtym accident in the Urals. J Environ Radioact. doi: 10.1016/j.jenvrad.2008.06.011 Google Scholar
  37. Prus-Glowacki W, Wojnicka-Poltorak A, Oleksyn J, Reich PB (1999) Industrial pollutants tend to increase genetic diversity: evidence from field-grown European scots pine populations. Water Air Soil Poll. doi: 10.1023/A:1005250923976 Google Scholar
  38. Rakwal R, Agrawal GK, Shibato J, Imanaka T, Fukutani S, Tamogami S, Endo S, Sahoo SK, Masuo Y, Kimura S (2009) Ultra low-dose radiation: stress responses and impacts using rice as a grass model. Int J Mol Sci. doi: 10.3390/Ijms10031215 Google Scholar
  39. Rogstad SH, Keane B, Collier MH (2003) Minisatellite DNA mutation rate in dandelions increases with leaf-tissue concentrations of Cr, Fe, Mn, and Ni. Environ Toxicol Chem. doi: 10.1002/etc.5620220919 Google Scholar
  40. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot. doi: 10.1093/jexbot/53.372.1351 Google Scholar
  41. Shao CL, Folkard M, Michael BD, Prise KM (2004) Targeted cytoplasmic irradiation induces bystander responses. Proc Natl Acad Sci USA. doi: 10.1073/pnas.0404930101 Google Scholar
  42. Theodorakis CW, Blaylock BG, Shugart LR (1997) Genetic ecotoxicology I: DNA integrity and reproduction in mosquitofish exposed in situ to radionuclides. Ecotoxicology. doi: 10.1023/A:1018674727022 Google Scholar
  43. van Dijk PJ, Tas ICQ, Falque M, Bakx-Schotman T (1999) Crosses between sexual and apomictic dandelions (Taraxacum), II. The breakdown of apomixis. Heredity 83:715–721CrossRefGoogle Scholar
  44. Wilson EB (1927) Probable inference, the law of succession and statistical inference. J Am Stat Assoc. doi: 10.2307/2276774 Google Scholar
  45. Zhivotovsky LA (1991) Population biometry. Nauka, MoscowGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Vera N. Pozolotina
    • 1
    Email author
  • Elena V. Antonova
    • 1
  • Victor S. Bezel
    • 2
  1. 1.Laboratory of Population RadiobiologyInstitute of Plant & Animal Ecology, Ural Branch of Russian Academy of SciencesYekaterinburgRussian Federation
  2. 2.Laboratory of Populations and Communities EcotoxicologyInstitute of Plant and Animal Ecology, Ural Branch of Russian Academy of SciencesYekaterinburgRussian Federation

Personalised recommendations