Advertisement

Ecotoxicology

, Volume 21, Issue 7, pp 1889–1898 | Cite as

Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species

  • Pei Liang
  • Yu-An Tian
  • Antonio Biondi
  • Nicolas Desneux
  • Xi-Wu Gao
Article

Abstract

The cosmopolitan silverleaf whitefly, Bemisia tabaci which had coexisted with Trialeurodes vaporariorum in Northern China for many years, has become the dominant species in the last years. Recent reports show that it is gradually displacing the other greenhouse whitefly species. Neonicotinoid, which includes nitenpyram, is a major group of insecticides used against whiteflies in various crops. When exposed to low doses of insecticides, insects may develop resistance by adapting physiologically. The short- and long-term effects of nitenpyram on insecticide sensitivity in B. tabaci biotype B and T. vaporariorum adult populations have been compared in the present study. After being exposed to LC25 of nitenpyram for 24 h, the B. tabaci biotype B adults showed no significant change in susceptibility to nitenpyram or to five other insecticides: imidacloprid, acetamiprid, abamectin, chlorpyrifos and beta-cypermethrin. By contrast, exposure to the LC25 of nitenpyram for 24 h led to a significant increase in the susceptibility of T. vaporariorum to nitenpyram and imidacloprid, by 1.8- and 2-fold, respectively. When exposed for seven generations to the LC25 of nitenpyram, B. tabaci developed 6-fold resistance to nitenpyram, and 3.1- and 5-fold cross-resistance to imidacloprid and acetamiprid, respectively, whereas T. vaporariorum developed lower resistance (3.7-fold) to the nitenpyram and very low cross-resistance to imidacloprid (2.5-fold). The higher adaptable nature of B. tabaci (demonstrated here in the case of nitenpyram) when exposed to low doses of insecticides may provide a selective advantage when competing with T. vaporariorum in crops.

Keywords

Bemisia tabaci Trialeurodes vaporariorum Sublethal effect Resistance Invasive pest 

Notes

Acknowledgments

Authors thank Edwige Amiens-Desneux for comments on an earlier version of the manuscript. This work was supported by the National Basic Research and Development Program of China (2009CB119200 and 2012CB114103).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10646_2012_922_MOESM1_ESM.doc (11.4 mb)
Supplementary material 1 (DOC 11710 kb)

References

  1. Ahmad M, Arif MI, Naveed M (2010) Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan. J Pest Sci 83:409–420CrossRefGoogle Scholar
  2. Ahmed MZ, Ren SX, Mandour NS, Maruthi MN, Naveed M, Qiu BL (2010) Phylogenetic analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) populations from cotton plants in Pakistan, China, and Egypt. J Pest Sci 83:135–141CrossRefGoogle Scholar
  3. Alon M, Benting J, Lueke B, Ponge T, Alon F, Morin S (2006) Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 36:71–79CrossRefGoogle Scholar
  4. Ay R, Yorulmaz S (2010) Inheritance and detoxification enzyme levels in Tetranychus urticae Koch (Acari: Tetranychidae) strain selected with chlorpyrifos. J Pest Sci 83:85–93CrossRefGoogle Scholar
  5. Basit M, Sayyed AH, Saleem MA, Saeed S (2011) Cross-resistance, inheritance and stability of resistance to acetamiprid in cotton whitefly, Bemisia tabaci Genn (Hemiptera: Aleyrodidae). Crop Prot 30:705–712CrossRefGoogle Scholar
  6. Biondi A, Desneux N, Siscaro G, Zappalà L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812CrossRefGoogle Scholar
  7. Brown JK, Frohlich DR, Rosell RC (1995) The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu Rev Entomol 40:511–534CrossRefGoogle Scholar
  8. Castle SJ (2006) Concentration and management of Bemisia tabaci in cantaloupe as a trap crop for cotton. Crop Prot 25:574–584CrossRefGoogle Scholar
  9. Chang J, Cao CW, Gao XW (2010) The effect of pretreatment with S,S,S-tributyl phosphorotrithioate on deltamethrin resistance and carboxylesterase activity in Aphis gossypii (Glover) (Homoptera: Aphididae). Pestic Biochem Physiol 98:296–299CrossRefGoogle Scholar
  10. Chu D, Zhang YJ, Cong B, Xu BY, Wu QJ (2004) The invasive mechanism of a worldwide important pest, Bemisia tabaci (Gennadius) biotype B. Acta Entomol Sinica 47:400–406Google Scholar
  11. Daly H, Doyen JT, Purcell AH III (1998) Introduction to insect biology and diversity, 2nd edn, Chapt. 14. Oxford University Press. New York, pp 279–300Google Scholar
  12. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB (2011) Bemisia tabaci: a statement of species status. Annu Rev Entomol 56:1–19CrossRefGoogle Scholar
  13. Desneux N, Fauvergue X, Dechaume-Moncharmont FX, Kerhoas L, Ballanger Y, Kaiser L (2005) Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. J Econ Entomol 98:9–17CrossRefGoogle Scholar
  14. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  15. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vasquez CA, González-Cabrera J, Catalán Ruescas D, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, history of invasion and prospects for biological control. J Pest Sci 83:197–215CrossRefGoogle Scholar
  16. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond—the new threat to tomato world production. J Pest Sci 84:403–408CrossRefGoogle Scholar
  17. Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64:1099–1105CrossRefGoogle Scholar
  18. Feng YT, Wu QJ, Wang SL, Chang X, Xie W, Xu BY, Zhang YJ (2010) Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 66:313–318CrossRefGoogle Scholar
  19. Feyereisen R (1995) Molecular biology of insecticide resistance. Toxicol Lett 82:83–90CrossRefGoogle Scholar
  20. Finney DJ (1971) Probit analysis. Cambridge University Press, CambridgeGoogle Scholar
  21. Foster S, Denholm I, Thonpson R (2003) Variation in response to neonicotinoid insecticides in peach–potato aphids Myzus persicae (Hemiptera: Aphididae). Pest Mang Sci 59:166–173CrossRefGoogle Scholar
  22. Georghiou GP (1972) The evolution of resistance to pesticides. Annu Rev Ecol Syst 3:133–168CrossRefGoogle Scholar
  23. Gressel J (2011) Low pesticide rates may hasten the evolution of resistance by increasing mutation frequencies. Pest Manag Sci 67:253–257CrossRefGoogle Scholar
  24. Guedes NMP, Guedes RNC, Ferreira GH, Silva LB (2009) Flight take-off and walking behavior of insecticide-susceptible and -resistant strains of Sitophilus zeamais exposed to deltamethrin. B Entomol Res 99:393–400CrossRefGoogle Scholar
  25. Han P, Niu CY, Lei CL, Cui JJ, Desneux N (2010) Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology 19:1612–1619CrossRefGoogle Scholar
  26. He YX, Zhao J, Zheng Y, Zhan Z, Desneux N, Wu KM (2012) Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicology. doi: 10.1007/s10646-012-0883-6 Google Scholar
  27. Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch Insect Biochem Physiol 58:216–225CrossRefGoogle Scholar
  28. Jallow MFA, Hoy CW (2005) Phenotypic variation in adult behavioral response and offspring fitness in Plutella xylostella (Lepidoptera: Plutellidae) in response to permethrin. J Econ Entomol 98:2195–2202CrossRefGoogle Scholar
  29. Krämer W, Schirmer U, Jeschke P, Witschel M (2011) Modern crop protection compounds. Wiley-VCH Verlag GmbH, WeinheimCrossRefGoogle Scholar
  30. Liang P, Cui JZ, Yang XQ, Gao XW (2007) Effects of host plants on insecticide susceptibility and carboxylesterase activity in Bemisia tabaci biotype B and greenhouse whitefly, Trialeurodes vaporariorum. Pest Manag Sci 63:365–371CrossRefGoogle Scholar
  31. Liu TX (2004) Toxicity and efficacy of spiromesifen, a tetronic acid insecticide, against sweetpotato whitefly (Hemiptera: Aleyrodidae) on melons and collards. Crop Prot 23:505–513CrossRefGoogle Scholar
  32. Liu B, Gao XW, Zheng BZ (2003) Effect of sublethal doses of anticholinesterase agents on toxicity of insecticides and their induction to acetylcholinesterase (AChE) activity in Helicoverpa armigera. Acta Entomol Sin 46:691–696Google Scholar
  33. Liu ZW, Williamson MS, Lansdell SJ, Denholm I, Han ZJ, Millar NS (2005) A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). PNAS 102:8420–8425CrossRefGoogle Scholar
  34. Liu JY, Zhang GF, Wan FH, Wang JJ (2008) Mechanisms of inter- and intra-specific competitive replacement by the Bemisia tabaci B biotype (Homoptera: Aleyrodidae). Biodiv Sci 16:214–224Google Scholar
  35. Luo C, Jonesb CM, Devineb G, Zhang F, Denholmb I, Gormanb K (2010) Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Prot 29:429–434CrossRefGoogle Scholar
  36. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710CrossRefGoogle Scholar
  37. Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58:200–215CrossRefGoogle Scholar
  38. Nauen R, Koob B, Elbert A (1998) Antifeedant effects of sublethal dosages of imidacloprid on Bemisia tabaci. Entomol Exp Appl 88:287–293CrossRefGoogle Scholar
  39. Palumbo JC, Horowitz AR, Prabhaker N (2001) Insecticidal control and resistance management for Bemisia tabaci. Crop Prot 20:739–765CrossRefGoogle Scholar
  40. Perring TM (1996) Biological differences of two species of Bemisia that contribute to adaptive advantage. In: Gerling D, Mayer RT (eds.) Taxonomy, biology, damage control and management. Intercept Ltd., Andover, Hants, pp 3–15Google Scholar
  41. Pysek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Env Resour 35:25–55CrossRefGoogle Scholar
  42. Qiu BL, Dang F, Li SJ, Ahmed MZ, Jin FL, Ren SX, Cuthbertson AGS (2011) Comparison of biological parameters between the invasive B biotype and a new defined Cv biotype of Bemisia tabaci (Hemiptera: Aleyradidae) in China. J Pest Sci 84:419–427CrossRefGoogle Scholar
  43. Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and management of the soybean aphid in North America. Annu Rev Entomol 56:375–399CrossRefGoogle Scholar
  44. Ramirez-Romero R, Desneux N, Decourtye A, Chaffiol A, Pham-Delègue MH (2008) Does Cry1Ab protein affect learning performances of the honeybee Apis mellifera L? Ecotoxicol Environ Saf 70:327–333CrossRefGoogle Scholar
  45. Reitz SR, Trumble JT (2002) Competitive displacement among insects and arachnids. Ann Rev Entomol 47:435–465CrossRefGoogle Scholar
  46. Roush RT, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380CrossRefGoogle Scholar
  47. SAS Institute (1999) SAS/Stat user’s guide, release 8. ed. SAS Institute, CaryGoogle Scholar
  48. Shad SA, Sayyed AH, Fazal S, Saleem MA, Zaka SM, Ali M (2012) Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura Fab. (Lepidoptera: Noctuidae). J Pest Sci 85:153–162CrossRefGoogle Scholar
  49. Tang ZH, Tao LM, Li Z (2006) Resistance of insect pest to neonicotinoid insecticides and management strategies. Chin J Pestic Sci 8:195–202Google Scholar
  50. Taylor CE, Georghiou GP (1979) Suppression of insecticide resistance by alteration of gene dominance and migration. J Econ Entomol 72:105–109Google Scholar
  51. Tomizawa M, Casida JE (2005) Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol 45:247–268CrossRefGoogle Scholar
  52. Toscano NC, Yoshida HA, Henneberry TJ (1997) Responses to azadirachtin and pyrethrum by two species of Bemisia (Homoptera: Aleyrodidae). J Econ Entomol 90:583–589Google Scholar
  53. Van de Veire M, Sterk G, Van der Staaij M, Ramakers PMJ, Tirry L (2002) Sequential testing scheme for the assessment of side-effects of plant protection products on the predatory bug Orius laevigatus. Biocontrol 47:101–113CrossRefGoogle Scholar
  54. Wu KM, Xu G, Guo YY (2001) The seasonal adult dynamics of Bemisia tabaci in the North of China. Plant Prot 27:14–15Google Scholar
  55. Xia B, Shi T, Liang P, Gao XW (2002) Effect of sublethal concentration of insecticides on the carboxylesterase in diamondback moth, Plutella xylostella (L.). Chin J Pestic Sci 4:23–27Google Scholar
  56. Zang LS, Liu SS, Liu YQ, Ruan YM, Wan FH (2005) Competition between the B biotype and a non-B biotype of the whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) in Zhejiang, China. Biodiv Sci 13:181–187CrossRefGoogle Scholar
  57. Zhang ZL, Luo C (2001) Occurrence and control countermeasures of Bemisia tabaci (Gennadius) in China. Plant Prot 27:25–29Google Scholar
  58. Zhang LP, Greenberg SM, Zhang YM, Liu TX (2011) Effectiveness of thiamethoxam and imidacloprid seed treatments against Bemisia tabaci (Hemiptera: Aleyrodidae) on cotton. Pest Manag Sci 67:226–232CrossRefGoogle Scholar
  59. Zhu LT (2006) Pesticides. Chemical Industry Press, BeijingGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Pei Liang
    • 1
  • Yu-An Tian
    • 1
  • Antonio Biondi
    • 2
    • 3
  • Nicolas Desneux
    • 2
  • Xi-Wu Gao
    • 1
  1. 1.Department of EntomologyChina Agricultural UniversityBeijingChina
  2. 2.French National Institute for Agricultural Research (INRA), ISASophia-AntipolisFrance
  3. 3.Department of Agri-food and Environmental Systems ManagementUniversity of CataniaCataniaItaly

Personalised recommendations