, Volume 21, Issue 7, pp 1867–1877 | Cite as

Antimicrobial effects of commercial silver nanoparticles are attenuated in natural streamwater and sediment

  • Benjamin P. ColmanEmail author
  • Si-Yi Wang
  • Melanie Auffan
  • Mark R. Wiesner
  • Emily S. Bernhardt


Given the demonstrated antimicrobial properties of silver nanoparticles (AgNPs), and the key role that microorganisms play in performing critical ecosystem functions such as decomposition and nutrient cycling, there is growing concern that AgNP pollution may negatively impact ecosystems. We examined the response of streamwater and sediment microorganisms to commercially available 21 ± 17 nm AgNPs, and compared AgNP impacts to those of dissolved-Ag added as AgNO3. We show that in streamwater, AgNPs and AgNO3 decreased respiration in proportion to dissolved-Ag concentrations at the end of the incubation (r2 = 0.78), while in sediment the only measurable effect of AgNPs was a 14 % decrease in sulfate concentration. This contrasts with the stronger effects of dissolved-Ag additions in both streamwater and sediment. In streamwater, addition of dissolved-Ag at a level equivalent to the lowest AgNP dose led to respiration below detection, a 55 % drop in phosphatase enzyme activity, and a 10-fold increase in phosphate concentration. In sediment, AgNO3 addition at a level equivalent to the highest AgNP addition led to a 34 % decrease in respiration, a 55 % increase in microbial biomass, and a shift in bacterial community composition. The results of this study suggest that, in similar freshwater environments, the short-term biological impacts of AgNPs on microbes are attenuated by the physical and chemical properties of streamwater and sediment.


Silver nanoparticles Microbial biomass Microbial respiration Enzyme activity Environment 



The authors would like to thank Sam Johnson, Medora Burke-Scoll, Brooke Hassett, Curt Richardson, Claudia Gunsch, and Christina Arnaout for their discussions and laboratory assistance. This work was funded through the Center for the Environmental Implications of Nanotechnology (CEINT), which is supported by funding from the National Science Foundation (NSF) and the US Environmental Protection Agency (EPA). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF or the EPA. This work has not been subjected to EPA review and no official endorsement should be inferred.


  1. Amin RM, Mohamed MB, Ramadan MA, Verwanger T, Krammer B (2009) Rapid and sensitive microplate assay for screening the effect of silver and gold nanoparticles on bacteria. Nanomedicine 4(6):637–643. doi: 102217/nnm0950 CrossRefGoogle Scholar
  2. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26(1):32–46. doi: 101111/j1442-9993200101070ppx Google Scholar
  3. Aruguete DM, Hochella MF (2010) Bacteria-nanoparticle interactions and their environmental implications. Environ Chem 7(1):3–9. doi: 101071/en09115 CrossRefGoogle Scholar
  4. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133–4139. doi: 10.1021/es7032718 CrossRefGoogle Scholar
  5. Bradford A, Handy RD, Readman JW, Atfield A, Muhling M (2009) Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in Estuarine sediments. Environ Sci Technol 43(12):4530–4536. doi: 10.1021/es9001949 CrossRefGoogle Scholar
  6. Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588. doi: 101021/es703238h CrossRefGoogle Scholar
  7. Choi OK, Hu ZQ (2009) Nitrification inhibition by silver nanoparticles. Water Sci Technol 59(9):1699–1702. doi: 102166/wst2009205 CrossRefGoogle Scholar
  8. Choi O, Cleuenger TE, Deng BL, Surampalli RY, Ross L, Hu ZQ (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43(7):1879–1886. doi: 101016/jwatres200901029 CrossRefGoogle Scholar
  9. Corley E, Scheufele D, Hu Q (2009) Of risks and regulations: how leading US nanoscientists form policy stances about nanotechnology. J Nanopart Res 11(7):1573–1585. doi: 101007/s11051-009-9671-5 CrossRefGoogle Scholar
  10. Costerton JW (2007) The biofilm primer. Springer, BerlinCrossRefGoogle Scholar
  11. Elzey S, Grassian VH (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 12(5):1945–1958. doi: 101007/s11051-009-9783-y CrossRefGoogle Scholar
  12. Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290. doi: 101021/es803259g CrossRefGoogle Scholar
  13. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35(1):167–176CrossRefGoogle Scholar
  14. Gao J, Wang Y, Hovsepyan A, Bonzongo JCJ (2011) Effects of engineered nanomaterials on microbial catalyzed biogeochemical processes in sediments. J Hazard Mater 186(1):940–945. doi: 101016/jjhazmat201011084 CrossRefGoogle Scholar
  15. Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA (2005) Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol 7(3):301–313. doi: 101111/j1462-2920200500695x CrossRefGoogle Scholar
  16. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22(7):1–19Google Scholar
  17. Kent RD, Vikesland PJ (2011) Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy. Environ Sci Technol. doi: 10.1021/es203475a Google Scholar
  18. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3(1):95–101CrossRefGoogle Scholar
  19. Kim B, Park CS, Murayama M, Hochella MF Jr (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44(19):7509–7514CrossRefGoogle Scholar
  20. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175. doi: 101021/es9035557 CrossRefGoogle Scholar
  21. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522Google Scholar
  22. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam P, Chiu J-F, Che C-M (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5(4):916–924CrossRefGoogle Scholar
  23. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam P, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12(4):527–534CrossRefGoogle Scholar
  24. McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden BeachGoogle Scholar
  25. Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo ZP, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157(11):3034–3041. doi: 101016/jenvpol200905047 CrossRefGoogle Scholar
  26. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346CrossRefGoogle Scholar
  27. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959–8964CrossRefGoogle Scholar
  28. Oksanen J (2010) Multivariate analysis of ecological communities in R: Vegan tutorialGoogle Scholar
  29. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) Vegan: community ecology package. R package version 1.17-3. Available at Accessed 12 Feb 2010
  30. Osborn AM, Moore ERB, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2(1):39–50CrossRefGoogle Scholar
  31. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720. doi: 101128/aem02218-06 CrossRefGoogle Scholar
  32. Project on Emerging Nanotechnologies (2010) Nanotechnology consumer products inventory. Accessed April 12 2010
  33. Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34(9):1309–1315CrossRefGoogle Scholar
  34. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88(6):1386–1394. doi: 10.1890/06-0219 CrossRefGoogle Scholar
  35. Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008) Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24(14):7457–7464. doi: 101021/la800091y CrossRefGoogle Scholar
  36. Smith RM, Martell AE, Motekaitis RJ (1997) NIST critically selected stability constants of metal complexes database, version 4.0. NIST Standard Reference Database 46Google Scholar
  37. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182CrossRefGoogle Scholar
  38. Sudduth EB, Bernhardt ES (2011) Testing the field of dreams hypothesis: functional responses to urbanization and restoration in stream ecosystems. Ecol Appl 21(6):1972–1988CrossRefGoogle Scholar
  39. Systat Software Inc. (2008) Sigmaplot, 11.0 edn, San Jose, USAGoogle Scholar
  40. Takeno N (2005) Atlas of Eh-pH diagrams, intercomparison of thermodynamic databases. Geological Survey of JapanGoogle Scholar
  41. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367. doi: 101021/es103995x CrossRefGoogle Scholar
  42. Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575. doi: 101016/jscitotenv200611007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Benjamin P. Colman
    • 1
    • 4
    Email author
  • Si-Yi Wang
    • 1
  • Melanie Auffan
    • 2
    • 3
    • 4
  • Mark R. Wiesner
    • 3
    • 4
  • Emily S. Bernhardt
    • 1
    • 4
  1. 1.Department of BiologyDuke UniversityDurhamUSA
  2. 2.International Consortium for the Environmental Implications of NanoTechnology (iCEINT)CEREGE UMR 7330-CNRS/Aix-Marseille UniversitéAix-en-ProvenceFrance
  3. 3.Civil and Environmental Engineering DepartmentDuke UniversityDurhamUSA
  4. 4.Center for the Environmental Implications of NanotechnologyDuke UniversityDurhamUSA

Personalised recommendations