, Volume 21, Issue 5, pp 1325–1332 | Cite as

Rodenticide exposure in wood mouse and house mouse populations on farms and potential secondary risk to predators

  • David G. ToshEmail author
  • Robbie A. McDonald
  • Stuart Bearhop
  • Neville R. Llewellyn
  • W. Ian Montgomery
  • Richard F. Shore


We compared capture rates and exposure to SGARs of wood mice (Apodemus sylvaticus) and house mice (Mus domesticus) in autumn/winter on farms that currently used, had previously used, and never used SGARs. 6–10 weeks after baiting programmes began, 15 % of 55 wood mice and 33 % of 12 house mice had detectable liver SGAR residues. Wood mice with residues occurred on farms not using rodenticides, reflecting the high mobility of these animals, and four had multiple liver residues, possibly due to cross-contamination of baits. The winter decline in wood mouse numbers was similar on farms that did and did not use SGARs, suggesting little long-term impact of SGARs on populations on farms. Our results indicate residual levels of rodenticides will be ever present in small mammal prey across the agricultural landscape unless all farms in a locality cease application. The implications for secondary exposure and poisoning of predators are discussed.


Anticoagulant rodenticide Apodemus sylvaticus Population numbers Secondary exposure Secondary poisoning 


  1. Berny PJ, Buronfosse T, Buronfosse F, Lamarque F, Lorgue G (1997) Field evidence of secondary poisoning of foxes (Vulpes vulpes) and buzzards (Buteo buteo) by bromadiolone, a 4-year survey. Chemosphere 35:1817–1829CrossRefGoogle Scholar
  2. Brakes CR, Smith RH (2005) Exposure of non-target small mammals to rodenticides: short-term effects, recovery and implications for secondary poisoning. J Appl Ecol 42:118–128CrossRefGoogle Scholar
  3. Brown ED, Macdonald DW, Tew TE, Todd LA (1994) Apodemus sylvaticus infected with Heligosomoides polygyrus (Nematoda) in an arable ecosystem: epidemiology and effects of infection on the movement of male mice. J Zool 234:623–640CrossRefGoogle Scholar
  4. Cox PR, Smith RH (1990) Rodenticide ecotoxicology: assessing non-target population effects. Funct Ecol 4:315–320CrossRefGoogle Scholar
  5. Dawson A, Bankes J, Garthwaite D (2001) Pesticide usage survey report 175—rodenticide use on farms in Great Britain growing arable crops. DEFRA, LondonGoogle Scholar
  6. Dowding CV, Shore RF, Worgan A, Baker PJ, Harris S (2010) Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus). Environ Pollut 158:161–166CrossRefGoogle Scholar
  7. Fisher P, O’Connor C, Wright G, Eason CT (2003) Persistence of four anticoagulant rodenticides in the livers of laboratory rats. DOC Science Internal Series 139, Department of Conservation, Wellington, New ZealandGoogle Scholar
  8. Fournier-Chambrillon C, Berny PJ, Coiffer O, Barbedienne P, Dasse B, Delas G, Galineau H, Mazet A, Pouznec P, Rosoux R, Fournier P (2004) Evidence of secondary poisoning of free-ranging riparian mustelids by anticoagulant rodenticides in France: implications for conservation of European mink (Mustela lutreola). J Wildl Dis 40:688–693Google Scholar
  9. Giraudoux P, Tremollieres C, Barbier B, Defaut R, Rieffel D, Bernard N, Lucot E, Berny P (2006) Persistance of bromadiolone anticoagulant rodenicide in Arvicolus terrestris populations after field control. Environ Res 102:291–298CrossRefGoogle Scholar
  10. Greaves JH, Shepherd DS, Gill JE (1982) An investigation of difenacoum resistance in Norway rat populations in Hampshire. Ann Appl Biol 100:581–587CrossRefGoogle Scholar
  11. Harradine JP (1976) Anticoagulant rodenticides and non-target wildlife: an ecological evaluation of permanent baiting in rural rat control. Unpublished Ph.D. thesis, University of EdinburghGoogle Scholar
  12. Hopkins HL, Kennedy ML (2004) An assessment of indices of relative and absolute abundance for monitoring populations of small mammals. Wildl Soc Bull 32:1289–1296CrossRefGoogle Scholar
  13. Johnson IP, Flowerdew JR, Hare R (1991) Effects of broadcasting and of drilling methiocarb molluscicide pellets on field populations of wood mice, Apodemus sylvaticus. Bull Environ Contam Toxicol 46:84–91CrossRefGoogle Scholar
  14. Love R, Webbon C, Glue DE, Harris S (2000) Changes in the food of British Barn Owls (Tyto alba) between 1974 and 1997. Mammal Rev 30:107–129CrossRefGoogle Scholar
  15. Luttik R, Clook MA, Taylor MR, Hart ADM (1999) Regulatory aspects of the ecotoxicological risk assessment of rodenticides. In: Cowan DP, Feare CJ (eds) Advances in vertebrate pest management. Filander Verlag, Fürth, pp 369–385Google Scholar
  16. Macdonald DW, Tew TE, Todd IA, Garner JP, Johnson PJ (2000) Arable habitat use by wood mice (Apodemus sylvaticus). 3. A farm-scale experiment on the effects of crop rotation. J Zool 250:313–320CrossRefGoogle Scholar
  17. MacNicoll AD (1986) Resistance to 4-hydroxycoumarin anticoagulants in rodents. In: Pesticide resistance: strategies and tactics for management, National Academy Press, Washington DC, pp 87–99Google Scholar
  18. McDonald RA, Harris S (2000) The use of fumigants and anticoagulant rodenticides on game estates in Great Britain. Mammal Rev 30:57–64CrossRefGoogle Scholar
  19. McDonald RA, Harris S, Turnbull G, Brown P, Fletcher M (1998) Anticoagulant rodenticides in stoats (Mustela erminea) and weasels (Mustela nivalis) in England. Environ Pollut 103:17–23CrossRefGoogle Scholar
  20. Merson MH, Byers RE, Kaukeinen DE (1984) Residues of the rodenticide brodifacoum in voles and raptors after orchard treatment. J Wildl Manag 48:212–216CrossRefGoogle Scholar
  21. Montgomery WI (1989) Population regulation in the wood mouse, Apodemus sylvaticus. II. Density dependence in spatial distribution and reproduction. J Anim Ecol 58:477–494CrossRefGoogle Scholar
  22. Montgomery WI, Dowie M (1993a) The distribution of the wood mouse Apodemus sylvaticus and the house mouse Mus domesticus on farmland in northeast Ireland. Ir Nat J 24:199–203Google Scholar
  23. Montgomery WI, Dowie M (1993b) The distribution and population regulation of the wood mouse Apodemus sylvaticus on field boundaries of pastoral farmland. J Appl Ecol 30:783–791CrossRefGoogle Scholar
  24. Parmar G, Bratt H, Moore R, Batten PL (1987) Evidence for a common binding-site in vivo for the retention of anticoagulants in rat liver. Hum Toxicol 6:431–432Google Scholar
  25. Rowe FP, Plant CJ, Bradfield A (1981) Trials of the anticoagulant rodenticides bromadiolone and difenacoum against the house mouse (Mus musculus L.). J Hyg 87:171–177CrossRefGoogle Scholar
  26. Rowe FP, Bradfield A, Swinney T (1985) Pen and field trials of a new anticoagulant rodenticide Flocoumafen against the house mouse (Mus musculus). J Hyg 95:623–627CrossRefGoogle Scholar
  27. Sage M, Coeurdassier M, Defaut R, Gimbert F, Berny P, Giraudoux P (2008) Kinetics of bromadiolone in rodent populations and implications for predators after field control of the water vole, Arvicola terrestris. Sci Total Environ 407:211–222CrossRefGoogle Scholar
  28. Shore RF, Birks JDS, Freestone P (1999) Exposure of non-target vertebrates to second-generation rodenticides in Britain, with particular reference to the Polecat Mustela putorius. N Z J Ecol 23:199–206Google Scholar
  29. Shore RF, Birks JDS, Afsar A, Weinberg CL, Kitchener AC (2003a) Spatial and temporal analysis of second-generation anticoagulant rodenticide residues in polecats (Mustela putorius) from throughout their range in Britain, 1992–1999. Environ Pollut 122:183–193CrossRefGoogle Scholar
  30. Shore RF, Fletcher MR, Walker LA (2003b) Agricultural pesticides and mammals in Britain. In: Tattersall F, Manley W (eds) Conservation and conflict: mammals and farming in Britain. Linnean Society Occasional Publication 4, The Linnean Society, London, pp. 37–50Google Scholar
  31. Shore RF, Malcolm HM, McLennan D, Turk A, Walker LA, Wienburg CL, Burn AJ (2006) Did foot and mouth disease control operations affect rodenticide exposure in raptors? J Wildl Manag 70:588–593CrossRefGoogle Scholar
  32. Slade NA, Blair SM (2000) An empirical test of using counts of individuals captured as indices of population size. J Mammal 81:1035–1045CrossRefGoogle Scholar
  33. Stone WB, Okoniewski JC, Stedelin JR (2003) Anticoagulant rodenticides and raptors: recent findings from New York, 1998–2001. Bull Environ Contam Toxicol 70:34–40CrossRefGoogle Scholar
  34. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  35. Thomas PJ, Mineau P, Shore RF, Champoux L, Martin P, Wilson L, Fitzgerald G, Elliot J (2011) Second generation anticoagulant rodenticides in predatory birds: probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. Environ Int 37:914–920CrossRefGoogle Scholar
  36. Tosh DG, Shore RF, Jess S, Withers A, Bearhop S, Montgomery WI, McDonald RA (2011a) User behaviour, best practice and the risks of non-target exposure associated with anticoagulant rodenticide use. J Environ Manag 92:1503–1508CrossRefGoogle Scholar
  37. Tosh DG, McDonald RA, Bearhop S, Lllewellyn NR, Fee S, Sharp EA, Barnett EA, Shore RF (2011b) Can small mammal prey guild affect the exposure of predators to anticoagulant rodenticides? Environ Pollut 159:3106–3112CrossRefGoogle Scholar
  38. Townsend MG, Entwisle P, Hart ADM (1995) Use of 2 halogenated biphenyls as indicators on non-target exposure during rodenticide treatments. Bull Environ Contam Toxicol 54:526–533CrossRefGoogle Scholar
  39. Walker LA, Shore RF, Turk A, Pereira MG, Best J (2008a) The predatory bird monitoring scheme (PBMS)—identifying chemical risks to top predators in Britain. Ambio 37:466–471CrossRefGoogle Scholar
  40. Walker LA, Turk A, Long SM, Wienburg CL, Best J, Shore RF (2008b) Second generation anticoagulant rodenticides in tawny owls (Strix aluco) from Great Britain. Sci Total Environ 392:93–98CrossRefGoogle Scholar
  41. Walker LA, Llewellyn NR, Pereira MG, Potter ED, Molenaar FM, Sainsbury AW, Shore RF (2010) Anticoagulant rodenticides in predatory birds 2009: a predatory bird monitoring scheme (PBMS) report. Centre for Ecology & Hydrology, Lancaster, 17 pp
  42. Watts CHS (1969) The regulation of wood mouse (Apodemus sylvaticus) numbers in Wytham woods, Berkshire. J Anim Ecol 38:285–304CrossRefGoogle Scholar
  43. Wolton RJ, Flowerdew JR (1985) Spatial distribution and movements of wood mice, yellow necked mice and bank voles. Symposium of the Zoological Society of London, No. 55, pp 249–275Google Scholar
  44. Yalden DW, Warburton AB (1979) The diet of the Kestrel in the Lake District. Bird Study 26:163–170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • David G. Tosh
    • 1
    • 2
    Email author
  • Robbie A. McDonald
    • 3
  • Stuart Bearhop
    • 4
  • Neville R. Llewellyn
    • 2
  • W. Ian Montgomery
    • 1
  • Richard F. Shore
    • 2
  1. 1.School of Biological SciencesQueen’s University BelfastNorthern IrelandUK
  2. 2.Centre for Ecology and Hydrology, Lancaster Environment CentreBailrigg, LancasterUK
  3. 3.Environment and Sustainability InstituteThe University of ExeterCornwallUK
  4. 4.Centre for Ecology and ConservationThe University of ExeterCornwallUK

Personalised recommendations