Ecotoxicology

, Volume 21, Issue 5, pp 1291–1300 | Cite as

Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci

  • Yuxian He
  • Jianwei Zhao
  • Yu Zheng
  • Nicolas Desneux
  • Kongming Wu
Article

Abstract

Neonicotinoid insecticides are widely used for controlling sucking pests, and sublethal effects can be expected in beneficial arthropods like natural enemies. Serangium japonicum is an important predator in many agricultural systems in China, and a potential biological control agent against Bemisia tabaci. We evaluated the toxicity of imidacloprid to S. japonicum and its impact on the functional response to B. tabaci eggs. S. japonicum adults exposed through contact to dried residues of imidacloprid at the recommended field rate on cotton against B. tabaci (4 g active ingredient per 100 l, i.e. 40 ppm [part per million]), and reduced rates (25, 20, 15 and 10 ppm) for 24 h showed high mortality rates. The mortality induced by a lowest rate, 5 ppm, was not significantly different than the control group and thus it was considered as a sublethal rate. The lethal rate 50 and hazard quotient (HQ) were estimated to be 11.54 ppm and 3.47 respectively, indicating a risk for S. japonicum in treated fields (HQ > 2). When exposed to dried residues of imidacloprid at the sublethal rate (5 ppm) on cotton leaves, functional response of S. japonicum to B. tabaci eggs was affected with an increase in handling time and a reduction in peak consumption of eggs. Imidacloprid residues also disturbed predator voracity, the number of B. tabaci eggs consumed on treated leaves being significantly lower than on untreated leaves. All effects disappeared within a few hours after transfer to untreated cotton leaves. Imidacloprid systemically applied at the recommended field rate (for cotton) showed no toxicity to S. japonicum, nor affected the functional response of the predator. Sublethal effects of imidacloprid on S. japonicum observed in our study likely negatively affect S. japonicum development and reproductive capacity and may ultimately reduce predator population growth. These results hint at the importance of assessing potential effects of imidacloprid on S. japonicum for developing effective integrated pest management programs of B. tabaci in China.

Keywords

Toxicity Hazard quotient Neonicotinoid Risk assessment Integrated pest management 

References

  1. Ahmad M, Ossiewatsch HR, Basedow T (2003) Effects of neem-treated aphids as food/hosts on their predators and parasitoids. J Appl Entomol 127:458–464CrossRefGoogle Scholar
  2. Ahmad M, Arif MI, Naveed M (2010) Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan. J Pest Sci 83:409–420CrossRefGoogle Scholar
  3. Arnó J, Gabarra R (2011) Side effects of selected insecticides on the Tuta absoluta (Lepidoptera: Gelechiidae) predators Macrolophus pygmaeus and Nesidiocoris tenuis (Hemiptera: Miridae). J Pest Sci 84:513–520CrossRefGoogle Scholar
  4. Baldin ELL, Beneduzzi RA (2010) Characterization of antibiosis and antixenosis to the whitefly silverleaf Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) in several squash varieties. J Pest Sci 83:221–227CrossRefGoogle Scholar
  5. Biondi A, Desneux N, Siscaro G, Zappalà L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812CrossRefGoogle Scholar
  6. Buckner JS, Freeman TP, Ruud RL (2002) Characterization and functions of the whitefly egg pedicel. Arch Insect Biochem Physiol 49:22–23CrossRefGoogle Scholar
  7. Cabral S, Soares AO, Garcia P (2011) Voracity of Coccinella undecimpunctata: effects of insecticides when foraging in a prey/plant system. J Pest Sci 84:373–379CrossRefGoogle Scholar
  8. Cahill M, Gorman K, Day S, Denholm I, Elbert A, Nauen R (1996) Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bull Entomol Res 86:343–349CrossRefGoogle Scholar
  9. Candolfi MP, Blümel S, Forster R, Bakker FM, Grimm C, Hassan SA, Heimbach U, Mead-Briggs MA, Reber B, Schmuck R, Vogt H (2000) Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative. IOBC/wprs, Gent, p 158Google Scholar
  10. Candolfi MP, Barrett KL, Campbell P, Forster R, Grandy N, Huet MC, Lewis G, Oomen PA, Schmuck R, Vogt H (2001) Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods. In: SETAC/ESCORT2 workshop report, 21–23 March 2000, WageningenGoogle Scholar
  11. Castro AA, Lacerda MC, Zanuncio TV, Ramalho FS, Polanczyk RA, Serrão JE, Zanuncio JC (2012) Effect of the insect growth regulator diflubenzuron on the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Ecotoxicology 21:96–103CrossRefGoogle Scholar
  12. Cilgi T, Jepson PC (1992) The use of tracers to estimate the exposure of beneficial insects to direct pesticide spraying in cereals. Ann Appl Biol 121:239–247CrossRefGoogle Scholar
  13. Claver MA, Ravichandran B, Khan MM, Ambrose DP (2003) Impact of cypermethrin on the functional response, predatory and mating behaviour of a non-target potential biological control agent Acanthaspis pedestris (Stål) (Het., Reduviidae). J Appl Entomol 127:18–22CrossRefGoogle Scholar
  14. Croft BA (1990) Arthropod biological control agents and pesticides. Wiley, New YorkGoogle Scholar
  15. Desneux N, Pham-Delègue MH, Kaiser L (2004a) Effects of sublethal and lethal doses of lambda-cyhalothrin on oviposition experience and host searching behaviour of a parasitic wasp, Aphidius ervi. Pest Manag Sci 60:381–389CrossRefGoogle Scholar
  16. Desneux N, Rafalimanana H, Kaiser L (2004b) Dose–response relationship in lethal and behavioural effects of different insecticides on the parasitic wasp Aphidius ervi. Chemosphere 54:619–627CrossRefGoogle Scholar
  17. Desneux N, Wajnberg E, Fauvergue X, Privet S, Kaiser L (2004c) Sublethal effects of a neurotoxic insecticide on the oviposition behaviour and the patch-time allocation in two aphid parasitoids, Diaeretiella rapae and Aphidius matricariae. Entomol Exp Appl 112:227–235CrossRefGoogle Scholar
  18. Desneux N, Fauvergue X, Dechaume-Moncharmont FX, Kerhoas L, Ballanger Y, Kaiser L (2005) Diaeretiella rapae limits Myzus persicae populations following applications of deltamethrin in oilseed rape. J Econ Entomol 98:9–17CrossRefGoogle Scholar
  19. Desneux N, Denoyelle R, Kaiser L (2006a) A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere 65:1697–1706CrossRefGoogle Scholar
  20. Desneux N, O’Neil RJ, Yoo HJS (2006b) Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator, and the effects of prey dispersion, predator density and temperature. Environ Entomol 35:1342–1349CrossRefGoogle Scholar
  21. Desneux N, Ramirez-Romero R, Kaiser L (2006c) Multi-step bioassay to predict recolonization potential of emerging parasitoids after a pesticide treatment. Environ Toxicol Chem 25:2675–2682CrossRefGoogle Scholar
  22. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefGoogle Scholar
  23. Eisenback BM, Salom SM, Kok LT, Lagalante AF (2010) Lethal and sublethal effects of imidacloprid on Hemlock woolly Adelgid (Hemiptera: Adelgidae) and two introduced predator species. J Econ Entomol 103:1222–1234CrossRefGoogle Scholar
  24. Evans Samuel C, Shaw Emma M, Ann Rypstra L (2010) Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology 19:1249–1257CrossRefGoogle Scholar
  25. Faria M, Wraight SP (2001) Biological control of Bemisia tabaci with fungi. Crop Prot 20:767–778CrossRefGoogle Scholar
  26. Finney DJ (1971) Probit analysis. Cambridge University Press, CambridgeGoogle Scholar
  27. Gerling D, Alomar O, Arno J (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Prot 20:779–799CrossRefGoogle Scholar
  28. Gu DJ, Yu MY, Hou RH, Li ZH (1991) The effects of sublethal doses of insecticides on the foraging behaviour of parasitoid, Diaeretiella rapae (Hym., Braconidae). Acta Ecol Sin 11:324–329Google Scholar
  29. Han P, Niu CY, Lei CL, Cui JJ, Desneux N (2010) Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. Ecotoxicology 19:1452–1459CrossRefGoogle Scholar
  30. Hao XC, Hu FQ, Fang CY (1990) Preliminary studies on reactions of different developmental stages of Coccinella septempunctata to insecticides. Nat Enem Insects 12:62–65Google Scholar
  31. He YX, Zhao JW, Wu DD, Wyckhuys KAG, Wu KM (2011) Sublethal effects of imidacloprid on Bemisia tabaci (Hemiptera: Aleyrodidae) under laboratory conditions. J Econ Entomol 104:833–838CrossRefGoogle Scholar
  32. Holling CS (1959) Some characteristics of simples types of predation and parasitism. Can Entomol 9:385–396CrossRefGoogle Scholar
  33. Horowitz AR, Kontsedalov S, Denholm I, Ishaaya I (2002) Dynamics of insecticide resistance in Bemisia tabaci: a case study with the insect growth regulator pyriproxyfen. Pest Manag Sci 58:1096–1100CrossRefGoogle Scholar
  34. Huo RM, Cao HQ, Xu GW, Tang F, Li XD (2004) The integrative toxicity effects of beta-cypermethrin on Propylea japonica larvae and Aphis gossiypii adults. Acta Phytophys Sin 31:96–100Google Scholar
  35. James DG (2003) Toxicity of imidacloprid to Galendromus occidentalis, Amblyseius andersoni and Neoseiulus fallacis (Acari: Phytoseiidae) from hops in Washington State, USA. Exp Appl Acarol 31:275–281CrossRefGoogle Scholar
  36. Jepson PC (1989) The temporal and spatial dynamics pesticide side effects on non-target invertebrates. In: Jepson PC (ed) Pesticides and non-target invertebrates. Intercept, Wimborne, pp 95–127Google Scholar
  37. Koch H, Weisser P (2001) Spray deposits of crop protection products on plants—the potential exposure of non-target arthropods. Chemosphere 44:307–312CrossRefGoogle Scholar
  38. Krischik VA, Landmark AL, Heimpel GE (2007) Soil-applied imidacloprid is translocated to nectar and kills nectar-feeding Anagyrus pseudococci (Girault) (Hymenoptera: Encyrtidae). Environ Entomol 36:1238–1245CrossRefGoogle Scholar
  39. Lambin M, Armengaud C, Raymond S, Gauthier M (2001) Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch Insect Biochem 48:129–134CrossRefGoogle Scholar
  40. Li WD, Lü YB, Lin WC, Bei YW, Zhang ZJ (2009) Absorption function of the egg pedicel of tobacco whitefly, Bemisia tabaci. Acta Agric Zhejiangensis 21:11–15Google Scholar
  41. Luo C, Zhang ZL (2000) Study progress on Bemisia tabaci (Gennadius). Beijing Agric Sci 18:4–13Google Scholar
  42. Madadi H, Parizi EM, Allahyari H, Enkegaard A (2011) Assessment of the biological control capability of Hippodamia variegata (Col.: Coccinellidae) using functional response experiments. J Pest Sci 84:447–455Google Scholar
  43. Moser SE, Obrycki JJ (2009) Non-target effects of neonicotinoid seed treatments; mortality of coccinellid larvae related to zoophytophagy. Biol Control 51:487–492CrossRefGoogle Scholar
  44. Naranjo SE, Ellsworth PC (2005) Mortality dynamics and population regulation in Bemisia tabaci. Entomol Exp Appl 116:93–108CrossRefGoogle Scholar
  45. Nauen R, Koob B, Elbert A (1998) Antifeedant effects of sublethal dosages of imidacloprid on Bemisia tabaci. Entomol Exp Appl 88:287–293CrossRefGoogle Scholar
  46. Ohnesorg WJ, Johnson KD, O’Neal ME (2010) Impact of reduced-risk insecticides on soybean aphid and associated natural enemies. J Econ Entomol 102:1816–1826CrossRefGoogle Scholar
  47. Oliveira MRV, Henneberry TJ, Anderson P (2001) History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot 20:709–723CrossRefGoogle Scholar
  48. O’Neil RJ (1997) Functional response and search strategy of Podisus maculiventris (Heteroptera: Pentatomidae) attacking Colorado potato beetle (Coleoptera: Chrysomelidae). Env Entomol 26:1183–1190Google Scholar
  49. Palumbo JC, Horowitz AR, Prabhaker N (2001) Insecticidal control and resistance management for Bemisia tabaci. Crop Prot 20:739–765CrossRefGoogle Scholar
  50. Papachristos DP, Milonas PG (2008) Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biol Control 47:77–81CrossRefGoogle Scholar
  51. Poletti M, Maia AHN, Omoto C (2007) Toxicity of neonicotinoid insecticides to Neoseiulus californicus and Phytoseiulus macropilis (Acari: Phytoseiidae) and their impact on functional response to Tetranychus urticae (Acari: Tetranychidae). Biol Control 40:30–36CrossRefGoogle Scholar
  52. Qiu SX, Qiu SQ, Yu KD, Xu JH, Guan X (2000) Selective toxicity of insecticide to Myzus persicae (Sulzer) and Propylaes japonica (Thunberg). Acta Agric Univ Jiangxiensi 22:519–522Google Scholar
  53. Ragsdale DW, Landis DA, Brodeur J, Heimpel GE, Desneux N (2011) Ecology and management of the soybean aphid in North America. Annu Rev Entomol 56:375–399CrossRefGoogle Scholar
  54. Ramirez-Romero R, Desneux N, Decourtye A, Chaffiol A, Pham-Delègue MH (2008) Does Cry1Ab protein affect learning performance of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol Environ Saf 70:327–333CrossRefGoogle Scholar
  55. Ren SX, Wang ZZ, Qiu BL, Xiao Y (2001) The pest status of Bemisia tabaci in China and non-chemical control strategies. Insect Sci 8:279–288CrossRefGoogle Scholar
  56. Ren SX, Huang Z, Yao SL (2004) Advances in studies on predators of Bemisia tabaci Gennadius. Nat Enem Insects 26:34–39Google Scholar
  57. Saber M (2011) Acute and population level toxicity of imidacloprid and fenpyroximate on an important egg parasitoid, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Ecotoxicology 20:1476–1484CrossRefGoogle Scholar
  58. Seagraves MP, Lundgren JG (2012) Effects of neonicotinoid seed treatments on soybean aphid and its natural enemies. J Pest Sci 85:125–132CrossRefGoogle Scholar
  59. Smith SF, Krischik VA (1999) Effects of systemic imidacloprid on Coleomegilla maculata (Coleoptera: Coccinellidae). Environ Entomol 28:1189–1195Google Scholar
  60. Stansly PA, Naranjo SE (2010) Bemisia: bionomics and management of a global pest. Springer, New YorkCrossRefGoogle Scholar
  61. Stara J, Ourednickova J, Kocourek F (2011) Laboratory evaluation of the side effects of insecticides on Aphidius colemani (Hymenoptera: Aphidiidae), Aphidoletes aphidimyza (Diptera: Cecidomyiidae), and Neoseiulus cucumeris (Acari: Phytoseidae). J Pest Sci 84:25–31CrossRefGoogle Scholar
  62. Stark JD, Banks JE (2003) Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505–519CrossRefGoogle Scholar
  63. Stark JD, Jepson PC, Mayer DF (1995) Limitations to use of topical toxicity data for predictions of pesticide side-effects in the field. J Econ Entomol 88:1081–1088Google Scholar
  64. Suma P, Zappala L, Mazzeo G, Siscaro G (2009) Lethal and sub-lethal effects of insecticides on natural enemies of citrus scale pests. Biocontrol 54:651–661CrossRefGoogle Scholar
  65. Tang F, Li SC, Kong XB, Wang KY (2007) Studies on selective toxicity of acetamiprid, imidacloprid and buprofezin to Trialeurodes vaporariorum and two natural enemies. Chin J Pestic Sci 9:88–91Google Scholar
  66. Thornham DG, Blackwell A, Evans KA, Wakefield M, Walters KFA (2008) Locomotory behaviour of the seven-spotted ladybird, Coccinella septempunctata, in response to five commonly used insecticides. Ann Appl Biol 152:349–359CrossRefGoogle Scholar
  67. Torres JB, Ruberson JR (2004) Toxicity of thiamethoxam and imidacloprid to Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) nymphs associated to aphid and whitefly control in cotton. Neotrop Entomol 33:99–106CrossRefGoogle Scholar
  68. Tran DH, Takagi M, Takasu K (2004) Effects of selective insecticides on host searching and oviposition behavior of Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae), a larval parasitoid of the American serpentine leafminer. Appl Entomol Zool 39:435–441CrossRefGoogle Scholar
  69. Urbaneja A, Pascual-Ruiz S, Pina T, Abad-Moyano R, Vanaclocha P, Monton H, Dembilio O, Castanera P, Jacas JA (2008) Efficacy of five selected acaricides against Tetranychus urticae (Acari: Tetranychidae) and their side effects on relevant natural enemies occurring in citrus orchards. Pest Manag Sci 64:834–842CrossRefGoogle Scholar
  70. Wang XY, Shen ZR (2002) Effects of sublethal doses of insecticides on predation of multicolored asian ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinelliodae). Acta Ecol Sin 22:2278–2284Google Scholar
  71. Wang ZY, Yan HF, Yang YH, Wu YD (2010) Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Manag Sci 66:1360–1366CrossRefGoogle Scholar
  72. Wu HB, Zhang F, Wang SQ, Zhang JM (2007) Susceptibility of Harmonia axyridis (Pallas) to several insecticides. Chin J Biol Control 23:213–221Google Scholar
  73. Xi DQ (2008) Five kinds of insecticides to Harmonia axyridis security determination experiment. Agrochemicals 47:50–51Google Scholar
  74. Yao SL, Ren SX, Huang Z (2004) The morphological characters and biology of Serangium Japonicum. Nat Enem Insects 26:22–27Google Scholar
  75. Zhang LP, Greenberg SM, Zhang YM, Liu TX (2011) Effectiveness of thiamethoxam and imidacloprid seed treatments against Bemisia tabaci (Hemiptera: Aleyrodidae) on cotton. Pest Manag Sci 67:226–232CrossRefGoogle Scholar
  76. Zhu FX, Wang JX, Liu F, Mu W, Zhang X (1998) Studies on insecticide susceptibility of lady birds. Acta Entomol Sin 41:359–365Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yuxian He
    • 1
  • Jianwei Zhao
    • 1
  • Yu Zheng
    • 1
  • Nicolas Desneux
    • 2
  • Kongming Wu
    • 3
  1. 1.Institute of Plant ProtectionFujian Academy of Agricultural SciencesFuzhouPeople’s Republic of China
  2. 2.French National Institute for Agricultural Research (INRA)Sophia AntipolisFrance
  3. 3.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations