, Volume 21, Issue 4, pp 1072–1083 | Cite as

Survival data analyses in ecotoxicology: critical effect concentrations, methods and models. What should we use?

  • Carole Forfait-Dubuc
  • Sandrine Charles
  • Elise Billoir
  • Marie Laure Delignette-Muller


In ecotoxicology, critical effect concentrations are the most common indicators to quantitatively assess risks for species exposed to contaminants. Three types of critical effect concentrations are classically used: lowest/ no observed effect concentration (LOEC/NOEC), LC x (x% lethal concentration) and NEC (no effect concentration). In this article, for each of these three types of critical effect concentration, we compared methods or models used for their estimation and proposed one as the most appropriate. We then compared these critical effect concentrations to each other. For that, we used nine survival data sets corresponding to D. magna exposition to nine different contaminants, for which the time-course of the response was monitored. Our results showed that: (i) LOEC/NOEC values at day 21 were method-dependent, and that the Cochran–Armitage test with a step-down procedure appeared to be the most protective for the environment; (ii) all tested concentration–response models we compared gave close values of LC50 at day 21, nevertheless the Weibull model had the lowest global mean deviance; (iii) a simple threshold NEC-model both concentration and time dependent more completely described whole data (i.e. all timepoints) and enabled a precise estimation of the NEC. We then compared the three critical effect concentrations and argued that the use of the NEC might be a good option for environmental risk assessment.


NOEC/LCx/NEC Hypothesis testing Concentration–response curves Bayesian inference Risk assessment 



We would like to thank Martyn Plummer for developing the useful JAGS and r-jags tools and David Fox for his precious comments. We also would like to thank the French Ministry of Higher Education and Research for providing financial support.


  1. Altman D, Bland J (1995) Absence of evidence is not evidence of absence. Br Med J 311:485–485CrossRefGoogle Scholar
  2. Armitage P, Colton T (2005) Trend test for counts and proportions in encyclopedia of biostatistics, 2nd edn, vol 8 (5516–5522). Wiley, ChichesterGoogle Scholar
  3. Baas J, Jager T, Kooijman SALM (2009) Estimation of no effect concentrations from exposure experiments when values scatter among individuals. Ecol Model 220:411–418CrossRefGoogle Scholar
  4. Bedaux J, Kooijman SALM (1994) Statistical analysis of bioassays, based on hazard modeling. Environ Ecol Stat 1:303–314CrossRefGoogle Scholar
  5. Billoir E, Delignette-Muller ML, Péry A, Charles S (2008) A Bayesian approach to analyzing ecotoxicological data. Environ Sci Technol 42:8978–84CrossRefGoogle Scholar
  6. Billoir E, Delignette-Muller ML, Péry A, Geffard O, Charles S (2008) Statistical cautions when estimating DEBtox parameters. J Theor Biol 254:55–64CrossRefGoogle Scholar
  7. de Bruijn J, Hof M (1997) How to measure no effect. Part IV: how acceptable is the EC x from an environmental policy point of view?. Environmetrics 8:263–267CrossRefGoogle Scholar
  8. Cairns J (1992) The threshold problem in ecotoxicology. Ecotoxicology 1:3–16CrossRefGoogle Scholar
  9. Chapman P, Caldwell R, Chapman P (1996) A warning: NOECs are inappropriate for regulatory use. Environ Toxicol Chem 15:77–79Google Scholar
  10. Crane M, Newman M (2000) What level of effect is a no observed effect? Environ Toxicol Chem 19:516–519CrossRefGoogle Scholar
  11. Delignette-Muller ML, Forfait C, Billoir E, Charles S (2011) A new perspective on the Dunnett procedure: filling the gap betweenNOEC/LOEC and ECx concepts. Environ Toxicol Chem 30:2888–2891CrossRefGoogle Scholar
  12. Ducrot V, Billoir E, Péry A, Garric J, Charles S (2010) From individual to population level effects of toxicants in the tubicifid Branchiura sowerbyi using threshold effect models in a Bayesian framework. Environ Toxicol Chem 44:3566–71CrossRefGoogle Scholar
  13. Fox D (2008) NECS, NOECS and the ECX. Australas J Ecotoxicol 14:7–9Google Scholar
  14. Fox D (2010) A Bayesian approach for determining the no effect concentration and hazardous concentration in ecotoxicology. Ecotoxicol Environ Saf 73:123–131CrossRefGoogle Scholar
  15. Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511CrossRefGoogle Scholar
  16. van der Hoeven N (1997) How to measure no effect. Part III : statistical aspects of NOEC, ECx and NEC estimates. Environmetrics 8:255–261CrossRefGoogle Scholar
  17. van der Hoeven N (2004) Current issues in statistics and models for ecotoxicological risk assessment. Acta Biotheor 52:201–217CrossRefGoogle Scholar
  18. van der Hoeven N, Noppert F, Leopold A (1997) How to measure no effect. Part I: towards a new measure of chronic toxicity in ecotoxicology. Introduction and workshop results. Environmetrics 8:241–248CrossRefGoogle Scholar
  19. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  20. Isnard P, Flammarion P, Roman G, Babut M, Bastien P, Bintein S, Esserméant L, Férard J, Gallotti-Schmitt S, Saouter E, Saroli M, Thiébaud H, Tomassone R, Vindimian E (2001) Statistical analysis of regulatory ecotoxicity tests. Chemosphere 45:659–69CrossRefGoogle Scholar
  21. Jager T (2011) Some good reasons to ban ECx and related concepts in ecotoxicology. Environ Sci Technol 45:8180–8181CrossRefGoogle Scholar
  22. Jonckheere A (1954) A distribution-free k-sample test against ordered alternatives. Biometrika 41:133–145Google Scholar
  23. Kooijman SALM, Bedaux J (1996) The analysis of aquatic toxicity data. VU University Press, AmsterdamGoogle Scholar
  24. Lopes C, Charles S, Vollat B, Garric J (2009) Toxicity of ivermectin on cladocerans: comparison of toxic effects on Daphnia and Ceriodaphnia species. Environ Toxicol Chem 28:2160–2166CrossRefGoogle Scholar
  25. Manar R, Bessi H, Vasseur P (2009) Reproductive effects and bioaccumulation of chlordane in Daphnia magna. Environ Toxicol Chem 28:2150–2159CrossRefGoogle Scholar
  26. Nelder J (1999) From statistics to statistical science. J R Stat Soc Ser D (The Statistician) 48:257–267CrossRefGoogle Scholar
  27. Newman M (2008) “What exactly are you inferring?” a closer look at hypothesis testing. Environ Toxicol Chem 27:1013–1019CrossRefGoogle Scholar
  28. Ntzoufras I (2009) Bayesian modeling using WinBugs. Wiley Series in computational statistics. Hoboken, NJGoogle Scholar
  29. OECD (1998) Guidelines for testing of chemicals no 211: Daphnia magna reproduction test. Technical report, Organisation for Economic Cooperation and DevelopmentGoogle Scholar
  30. OECD (2006) Current approaches in the statistical analysis of ecotoxicity data: a guidance to application. Technical report, Organisation for Economic Cooperation and DevelopmentGoogle Scholar
  31. Pires A, Branco J, Picado A, Mendonca E (2002) Models for the estimation of a ‘no effect concentration’. Environmetrics 13(1):15–27CrossRefGoogle Scholar
  32. Plummer M (2010) R package version 2.1.0-10Google Scholar
  33. R Development Core Team (2010) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL ISBN 3-900051-07-0
  34. Ritz C (2010) Toward a unified approach to dose-response modeling in ecotoxicology. Environ Toxicol Chem 29:220–229CrossRefGoogle Scholar
  35. Santojanni A, Gorbi G, Sartore F (1995) Prediction of mortality in chronic toxicity tests on Daphnia magna. Water Res 29:1453–1459CrossRefGoogle Scholar
  36. van Straalen N (1997) How to measure no effect. Part II: threshold effects in ecotoxicology. Environmetrics 8:249–253CrossRefGoogle Scholar
  37. Warne MSJ, van Dam R (2008) NOEC and LOEC data should no longer be generated or used. Australas J Ecotoxicol 14:1–5Google Scholar
  38. Wennig R (2000) Threshold values in toxicology-useful or not? Forensic Sci Int 113:323–330CrossRefGoogle Scholar
  39. Wollenberger L, Halling-Sørensen B, Kusk K (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40:723–730CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carole Forfait-Dubuc
    • 1
    • 2
  • Sandrine Charles
    • 1
    • 2
  • Elise Billoir
    • 1
    • 2
    • 3
  • Marie Laure Delignette-Muller
    • 1
    • 2
    • 4
  1. 1.Université de LyonLyonFrance
  2. 2.CNRS, UMR5558, Laboratoire de Biométrie et Biologie EvolutiveUniversité Lyon1VilleurbanneFrance
  3. 3.Pôle de Recherche ROVALTAIN en Toxicologie Environnementale et Ecotoxicologie, Bâtiment RhovalparcValenceFrance
  4. 4.VetAgro Sup Campus Vétérinaire de LyonMarcy l’EtoileFrance

Personalised recommendations