Ecotoxicology

, Volume 21, Issue 4, pp 1013–1023 | Cite as

Dissolved organic carbon reduces uranium toxicity to the unicellular eukaryote Euglena gracilis

  • Melanie A. Trenfield
  • Jack C. Ng
  • Barry Noller
  • Scott J. Markich
  • Rick A. van Dam
Article

Abstract

The influence of dissolved organic carbon (DOC), in the form of Suwannee River fulvic acid (SRFA), on uranium (U) toxicity to the unicellular eukaryote, Euglena gracilis (Z strain), was investigated at pH 6. In a background medium without SRFA, exposure of E. gracilis to 57 μg L−1 U resulted in a 50% reduction in growth (IC50). The addition of 20 mg L−1 DOC (as SRFA), reduced U toxicity 4 to 5-fold (IC50 increased to 254 μg L−1 U). This reduction in toxicity was also evident at more sensitive effect levels with a 10% reduction in growth (IC10) occurring at 5 μg L−1 U in the background medium and at 17 μg L−1 U in the SRFA medium, respectively. This amelioration of toxicity with the addition of SRFA was linked to a decrease in the bioavailability of U, with geochemical speciation modelling predicting 84% of U would be complexed by SRFA. The decrease in bioavailability of U in the presence of SRFA was also evident from the 11–14 fold reduction in the cellular concentration of U compared to that of E. gracilis in the background medium. Stepwise multiple linear regression analyses indicated that UO22+ alone explained 51% of the variation in measured U toxicity to E. gracilis. Preliminary U exposures to E. gracilis in the presence of a reactive oxygen species probe, suggest exposure to ≥60 μg L−1 U may induce oxidative stress, but this endpoint was not considered to be a sensitive biological indicator.

Keywords

Euglena Fulvic acid Uranium Toxicity Freshwater Dissolved organic carbon 

Supplementary material

10646_2012_855_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 41 kb)

References

  1. Antunes SC, Pereira R, Goncalves F (2007) Acute and chronic toxicity of effluent water from an abandoned uranium mine. Arch Environ Contam Toxicol 53:207–213CrossRefGoogle Scholar
  2. APHA, AWWA, WEF (2005) in: Eaton AD, Clesceri LS, Rice EW, Greenberg AE (eds) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Assocation, Water Environment Federation, Washington DCGoogle Scholar
  3. Barillet S, Adam C, Palluel O, Devaux A (2007) Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ Toxicol Chem 26:497–505CrossRefGoogle Scholar
  4. Barillet S, Larno V, Floriani M, Devaux A, Adam-Guillermin C (2010) Ultrastructural effects on gill, muscle, and gonadal tissues induced in zebrafish (Danio rerio) by a waterborne uranium exposure. Aquat Toxicol 100:295–302CrossRefGoogle Scholar
  5. Brown P, Haworth A, Sharland S, Tweed C (1991) HARPHRQ: an extended version of the geochemical code PHREEQE. NSS/R 188. UK Atomic Energy Authority, OxfordGoogle Scholar
  6. Buet A, Barillet S, Camilleri V (2005) Changes in oxidative stress parameters in fish as response to direct uranium exposure. Radioprotection 40:S151–S155CrossRefGoogle Scholar
  7. Campbell PGC, Twiss MR, Wilkinson KJ (1997) Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota. Can J Fish Aquat Sci 54:2543–2554CrossRefGoogle Scholar
  8. Danilov RA, Ekelund NGA (2001) Responses of photosynthetic efficiency, cell shape and motility in Euglena gracilis (Euglenophyceae) to short-term exposure to heavy metals and pentachlorophenol. Water Air Soil Pollut 132:61–73CrossRefGoogle Scholar
  9. dos Santos Ferreira V, Roccetta I, Conforti V, Bench S, Feldman R, Levin M (2007) Gene expression patterns in Euglena gracilis: insights into the cellular response to environmental stress. Gene 389:136–145CrossRefGoogle Scholar
  10. Einicker-Lamas M, Soares MJ, Soares MS, Oliveira MM (1996) Effects of cadmium on Euglena gracilis membrane lipids. Braz J Med Biol Res 29:941–948Google Scholar
  11. Einicker-Lamas M, Meziana GA, Fernandesa TB, Silva FLS, Guerra F, Miranda K, Attias M, Oliveira MM (2002) Euglena gracilis as a model for the study of Cu2+ and Zn2+ toxicity and accumulation in eukaryotic cells. Environ Pollut 120:779–786Google Scholar
  12. Franklin NM, Stauber JL, Markich SJ, Lim RP (2000) pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquat Toxicol 48:275–289CrossRefGoogle Scholar
  13. Gajdosova J, Reichrtova E (1996) Different growth response of Euglena gracilis to Hg, Cd, Cr and Ni compounds. Anal Bioanal Chem 354:641–642CrossRefGoogle Scholar
  14. Gianguzza A, Pettignano A, Sammartano S (2005) Interaction of the dioxouranium(VI) ion with aspartate and glutamate in NaCl(aq) at different ionic strengths. J Chem Eng Data 50:1576–1581CrossRefGoogle Scholar
  15. Glaus M, Hummel W, Van Loon L (2000) Trace metal-humate interactions. I. Experimental determination of conditional stability constants. Appl Geochem 15:953–973CrossRefGoogle Scholar
  16. Good NE, Winget GD, Winter W, Izawa S, Singh RMM (1966) Hydrogen ion buffers for biological research. Biochemistry 5:467–477CrossRefGoogle Scholar
  17. Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 29,79-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-29,79- dichlorodihydrofluorescein diacetate and dihydrorhodamine 123. Free Radic Biol Med 27:146–159CrossRefGoogle Scholar
  18. Hogan AC, van Dam RA, Markich SJ, Camilleri C (2005) Chronic toxicity of uranium to a tropical green alga (Chlorella sp.) in natural waters and the influence of dissolved organic carbon. Aquat Toxicol 75:343–353CrossRefGoogle Scholar
  19. Hynes TP, Schmidt RM, Meadley T, Thompson NA (1987) The impact of effluents from a uranium mine and mill complex in Northern Saskatchewan on contaminant concentrations in receiving waters and sediments. Water Pollut Res J Can 22:559–569Google Scholar
  20. International Atomic Energy Agency (2008) Energy, electricity and nuclear power estimates for the period to 2030. Reference Data Series No. 1. ViennaGoogle Scholar
  21. International Humic Substances Society (2008) Source materials for IHSS samples. http://www.humicsubstances.org/sources.html. Accessed Jan 2011
  22. Invitrogen (2006) Reactive oxygen species (ROS) detection reagents. http://probes.invitrogen.com/media/pis/mp36103.pdf. Accessed Jan 2011
  23. Invitrogen (2011) CM-H2DCFDA (general oxidative stress indicator). http://products.invitrogen.com/ivgn/product/C6827. Accessed 7 Apr 2011
  24. Kaddissi SA, Legeay A, Gonzalez P, Floriani M, Camilleri V, Gilbin R, Simon O (2011) Effects of uranium uptake on transcriptional responses, histological structures and survival rate of the crayfish Procambarusclarkii. Ecotoxicol Environ Safe 74:1800–1807CrossRefGoogle Scholar
  25. Koren LE, Hutner SH (1967) High-yield media for photosynthesizing Euglena gracilis Z. J Protozool 14 (suppl):17Google Scholar
  26. Lacky J (1968) Ecology of Euglena. In: Beutow DE (ed) The biology of Euglena, vol I. Academic Press, New York, pp 27–44Google Scholar
  27. Landa ER, Gray JR (1995) US geological survey research on the environmental fate of uranium mining and milling wastes. Environ Geol 26:19–31CrossRefGoogle Scholar
  28. Malcolm RL (1985) Geochemistry of stream fulvic and humic substances. In: Aiken GR, McKnight DM, Wershaw RL (eds) Humic substances in soil, sediment, and water. Wiley, New York, pp 181–209Google Scholar
  29. Markich SJ, Brown PL (1999) Thermochemical data (log K) for environmentally-relevant elements. Commonweath of Australia, SydneyGoogle Scholar
  30. Markich SJ, Brown PL, Jeffree RA, Lim RP (2000) Valve movement responses of Velesunio angasi (Bivalvia: Hyriidae) to manganese and uranium: an exception to the free ion activity model. Aquat Toxicol 51:155–175CrossRefGoogle Scholar
  31. Mathews T, Beaugelin-Seiller K, Garnier-Laplace J, Gilbin R, Adam C, Della-Vedova C (2009) A probabilistic assessment of the chemical and radiological risks of chronic exposure to uranium in freshwater ecosystems. Environ Sci Technol 43:6684–6690Google Scholar
  32. Matsuo AYO, Playle RC, Val AL, Wood CM (2004) Physiological action of dissolved organic matter in rainbow trout in the presence and absence of copper: sodium uptake kinetics and unidirectional flux rates in hard and softwater. Aquat Toxicol 70:63–81CrossRefGoogle Scholar
  33. Meybeck M (2003) Global occurrence of major elements in rivers. In: Drever JI (ed) Treatise on geochemistry, surface and groundwater, weathering and soils. Elsevier, London, pp 207–223Google Scholar
  34. Mladenov N, McKnight DM, Wolski P, Ramberg L (2005) Effects of annual flooding on dissolved organic carbon dynamics within a pristine wetland, the Okavango Delta, Botswana. Wetlands 25:622–638CrossRefGoogle Scholar
  35. Navarro L, Torres-Marquez ME, Gonzalez-Moreno S, Devars S, Hernandez R, Moreno-Sanchez R (1997) Comparison of physiological changes in Euglena gracilis during exposure to heavy metals of heterotrophic and autotrophic cells. Comp Biochem Physiol C 116:265–272Google Scholar
  36. Nechay BR, Thompson JD, Palmer Saunders J (1980) Inhibition by uranyl nitrate of adenosine triphosphatases derived from animal and human tissues. Toxicol Appl Pharm 53:410–419CrossRefGoogle Scholar
  37. Ohta M, Okazaki S, Hiramatsu M, Suzuki T (2001) Comparative studies on the cellular response to chemical loading in unicellular eukaryote, Euglena gracilis, strains Z and SMZ. Nutr Res 18:83–89Google Scholar
  38. Overbaugh JM (1985) Initial observations on the role of glutathione peroxidases in euglena. Free Radic Biol Med 1:187–193CrossRefGoogle Scholar
  39. Parent L, Twiss M, Campbell P (1996) Influences of natural dissolved organic matter on the interaction of aluminum with the microalga Chlorella: a test of the free-ion model of trace metal toxicity. Environ Sci Technol 30:1713–1720CrossRefGoogle Scholar
  40. Periyakaruppan A, Kumar F, Sarkar S, Sharma CS, Ramesh GT (2007) Uranium induces oxidative stress in lung epithelial cells. Arch Toxicol 81:389–395CrossRefGoogle Scholar
  41. Pyle GG, Swanson SM, Lehmkuhl DM (2002) Toxicity of uranium mine receiving waters to early life stage fathead minnows (Pimephales promelas) in the laboratory. Environ Pollut 116:243–255CrossRefGoogle Scholar
  42. Ribera D, Labrot F, Tisnerat G, Narbonne JF (1996) Uranium in the environment: occurrence, transfer and biological effects. Rev Environ Contam Toxicol 146:53–89CrossRefGoogle Scholar
  43. Semaan M, Holdway DA, van Dam RA (2001) Comparative sensitivity of three populations of the cladoceran Moinodaphnia macleayi to acute and chronic uranium exposure. Environ Toxicol 16:365–376CrossRefGoogle Scholar
  44. Trenfield MA, Ng JC, Noller BN, Markich SJ, van Dam RA (2011a) Dissolved organic carbon reduces uranium bioavailability and toxicity. 2. Uranium[VI] speciation and toxicity to three tropical freshwater organisms. Environ Sci Technol 45:3082–3089CrossRefGoogle Scholar
  45. Trenfield MA, McDonald S, Kovacs K, Lesher E, Pringle JM, Markich SJ, Ng JC, Noller BN, Brown PL, van Dam RA (2011b) Dissolved organic carbon reduces uranium bioavailability and toxicity. 1. Characterization of an aquatic fulvic acid and its complexation with uranium[VI]. Environ Sci Technol 45:3075–3081CrossRefGoogle Scholar
  46. Watanabe M, Suzuki T (2001) Cadmium-induced abnormality in strains of Euglena gracilis: morphological alteration and its prevention by zinc and cyanocobalamin. Comp Biochem Phys C 130:29–39Google Scholar
  47. Watanabe M, Suzuki T (2002) Involvement of reactive oxygen stress in cadmium-induced cellular damage in Euglena gracilis. Comp Biochem Physiol C 131:491–500Google Scholar
  48. Yazzie M, Gamble SL, Civitello ER, Stearns DM (2003) Uranyl acetate causes DNA single strand breaks in vitro in the presence of ascorbate (Vitamin C). Chem Res Toxicol 16:524–530CrossRefGoogle Scholar
  49. Zeman FA, Gilbin R, Alonzo F, Lecomte-Pradines C, Garnier-Laplace J, Aliaume C (2008) Effects of waterborne uranium on survival, growth, reproduction and physiological processes of the freshwater cladoceran Daphnia magna. Aquat Toxicol 86:370–378CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Melanie A. Trenfield
    • 1
    • 2
  • Jack C. Ng
    • 2
  • Barry Noller
    • 3
  • Scott J. Markich
    • 4
  • Rick A. van Dam
    • 1
  1. 1.Ecotoxicology ProgramEnvironmental Research Institute of the Supervising ScientistDarwinAustralia
  2. 2.National Research Centre for Environmental ToxicologyThe University of QueenslandCoopers PlainsAustralia
  3. 3.Centre for Mined Land RehabilitationThe University of QueenslandSt. LuciaAustralia
  4. 4.Aquatic Solutions InternationalDundasAustralia

Personalised recommendations