, Volume 21, Issue 2, pp 465–474 | Cite as

Fundulus heteroclitus adapted to PAHs are cross-resistant to multiple insecticides



Atlantic killifish (Fundulus heteroclitus) from the Atlantic Wood Superfund site on the Elizabeth River (ER), VA are dramatically resistant to the acute toxicity and teratogenesis caused by polycyclic aromatic hydrocarbons (PAHs). To understand the consequences of adaptation to chronic PAH pollution, we have attempted to further define the chemical tolerance associated with this resistance. An important component of the PAH adaptation of ER fish is the dramatic down-regulation of the aryl hydrocarbon receptor (AHR) pathway, resulting in decreased cytochrome p450 (CYP) 1 activity. Herein, we compared the susceptibility to several insecticides of ER fish to that of reference site (King's Creek; KC) fish; use of these chemicals as probes of the resistance will help to demonstrate if the contaminant adaptation exhibited by ER fish is broad or narrow and AHR-focused. We hypothesized that ER fish would be less susceptible to the organophosphate chlorpyrifos (activated by CYP) and more susceptible to the pyrethroid permethrin (detoxified by CYP). Comparison of acute toxicity in 5-day-old larvae supported this hypothesis for chlorpyrifos. As expected, chemical up-regulation of CYP by co-exposure to β-naphthoflavone (BNF) enhanced the susceptibility of KC but it did not affect ER larvae. Unexpectedly, ER larvae were much less susceptible to permethrin than KC larvae. However, co-exposure to BNF greatly decreased the susceptibility of KC larvae, indicating that metabolism of permethrin by CYP was protective. Additionally, fish from each population were compared for susceptibility to the carbamate carbaryl, an acute neurotoxicant and weak AHR agonist that induces teratogenesis similar to that caused by PAHs. ER embryos and larvae were less susceptible than KC fish. These results suggest that the adaptive phenotype of ER fish is multi-faceted and that aspects other than CYP response are likely to greatly affect their response to contaminants.


Fundulus heteroclitus Adaptation Polycyclic aromatic hydrocarbon Pesticides Elizabeth River 



We gratefully acknowledge the laboratory of Dr. Jason Belden for performing pesticide analyses. We also thank Susannah Butters, Dr. Cole Matson, Dr. Lindsey Garner, and Dr. Dawoon Jung for their assistance with exposure and analysis. This work was supported by the National Institute of Environmental Health supported Superfund Research Program (P42ES10356) and Integrated Toxicology Program (T32ES007031).


  1. Armknecht SL, Kaattari SL, Van Veld PA (1998) An elevated glutathione S-transferase in creosote-resistant mummichog (Fundulus heteroclitus). Aquat Toxicol 41(1–2):1–16CrossRefGoogle Scholar
  2. Baser S, Erkoc F, Selvi M, Kocak O (2003) Investigation of acute toxicity of permethrin on guppies Poecilia reticulata. Chemosphere 51(6):469–474CrossRefGoogle Scholar
  3. Bello SM, Franks DG, Stegeman JJ, Hahn ME (2001) Acquired resistance to Ah receptor agonists in a population of Atlantic killifish (Fundulus heteroclitus) inhabiting a marine superfund site: In vivo and in vitro studies on the inducibility of xenobiotic metabolizing enzymes. Toxicol Sci 60(1):77–91CrossRefGoogle Scholar
  4. Billiard SM, Timme-Laragy AR, Wassenberg DM, Cockman C, Di Giulio RT (2006) The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol Sci 92(2):526–536CrossRefGoogle Scholar
  5. Bohonowych JE, Denison MS (2007) Persistent binding of ligands to the aryl hydrocarbon receptor. Toxicol Sci 98(1):99–109CrossRefGoogle Scholar
  6. Bradbury SP, Coats JR (1989) Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environ Toxicol Chem 8(5):373–380CrossRefGoogle Scholar
  7. Buss DS, Callaghan A (2008) Interaction of pesticides with p-glycoprotein and other ABC proteins: A survey of the possible importance to insecticide, herbicide and fungicide resistance. Pestic Biochem Physiol 90(3):141–153CrossRefGoogle Scholar
  8. Buss DS, McCaffery AR, Callaghan A (2002) Evidence for p-glycoprotein modification of insecticide toxicity in mosquitoes of the Culex pipiens complex. Med Vet Entomol 16(2):218–222CrossRefGoogle Scholar
  9. Chen S, Yang YH, Wu YD (2005) Correlation between fenvalerate resistance and cytochrome P450-mediated O-demethylation activity in Helicoverpa armigera (Lepidoptera : Noctuidae). J Econ Entomol 98(3):943–946CrossRefGoogle Scholar
  10. Chiang FM, Sun CN (1993) Glutathione transferase isozymes of diamondback moth larvae and their role in the degradation of some organophosphorous insecticides. Pestic Biochem Physiol 45(1):7–14CrossRefGoogle Scholar
  11. Clark BW, Matson CW, Jung D, Di Giulio RT (2010) AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus). Aquat Toxicol 99:232–240CrossRefGoogle Scholar
  12. Coats JR, Symonik DM, Bradbury SP, Dyer SD, Timson LK, Atchison GJ (1989) Toxicology of synthetic pyrethroids in aquatic organisms—an overview. Environ Toxicol Chem 8(8):671–679CrossRefGoogle Scholar
  13. Cooper PS, Vogelbein WK, Van Veld PA (1999) Altered expression of the xenobiotic transporter P-glycoprotein in liver and liver tumours of mummichog (Fundulus heteroclitus) from a creosote-contaminated environment. Biomarkers 4(1):48–58CrossRefGoogle Scholar
  14. Culley DD, Ferguson DE (1969) Patterns of insecticide resistance in mosquitofish, Gambusia affinis. J Fish Res Board Can 26(9):2395–2401Google Scholar
  15. Denison MS, Phelan D, Winter GM, Ziccardi MH (1998) Carbaryl, a carbamate insecticide, is a ligand for the hepatic Ah (dioxin) receptor. Toxicol Appl Pharmacol 152(2):406–414CrossRefGoogle Scholar
  16. Fabacher DL, Chambers H (1974) Resistance to herbicides in insecticide-resistant mosquitofish, Gambusia affinis. Environ Lett 7(1):15–20CrossRefGoogle Scholar
  17. Faisal M, Weeks BA, Vogelbein WK, Huggett RJ (1991) Evidence of aberration of the natural cytotoxic-cell activity in Fundulus Heteroclitus (Pisces, Cyprinodontidae) from the Elizabeth River, Virginia. Vet Immunol Immunopathol 29(3–4):339–351CrossRefGoogle Scholar
  18. Frederick LA, Van Veld PA, Rice CD (2007) Bioindicators of immune function in creosote-adapted estuarine killifish, Fundulus heteroclitus. J Toxicol Environ Health A 70(17):1433–1442CrossRefGoogle Scholar
  19. Gaworecki KM, Rice CD, van den Hurk P (2004) Induction of phenol-type sulfotransferase and glucuronosyltransferase in channel catfish and mummichog. Mar Environ Res 58(2–5):525–528CrossRefGoogle Scholar
  20. Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jonsson ME et al (2010) Identification and developmental expression of the full complement of Cytochrome P450 genes in zebrafish. BMC Genomics 11:21CrossRefGoogle Scholar
  21. Hardstone MC, Leichter CA, Scott JG (2009) Multiplicative interaction between the two major mechanisms of permethrin resistance, kdr and cytochrome P450-monooxygenase detoxification, in mosquitoes. J Evol Biol 22(2):416–423CrossRefGoogle Scholar
  22. Hemingway J, Miyamoto J, Herath PRJ (1991) A possible novel link between organophosphorous and DDT insecticide resistance genes in Anopheles—supporting evidence from fenitrothion metabolsim studies. Pestic Biochem Physiol 39(1):49–56CrossRefGoogle Scholar
  23. Hemingway J, Hawkes NJ, McCarroll L, Ranson H (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34(7):653–665CrossRefGoogle Scholar
  24. Hintzen EP, Lydy MJ, Belden JB (2009) Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas. Environ Pollut 157(1):110–116CrossRefGoogle Scholar
  25. Hodgson E, Rose RL (2008) Metabolic interactions of agrochemicals in humans. Pest Manag Sci 64(6):617–621CrossRefGoogle Scholar
  26. Jones HS, Panter GH, Hutchinson TH, Chipman JK (2010) Oxidative and conjugative xenobiotic metabolism in zebrafish larvae in vivo. Zebrafish 7(1):23–30CrossRefGoogle Scholar
  27. Kinnison MT, Hairston NG (2007) Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Funct Ecol 21(3):444–454CrossRefGoogle Scholar
  28. Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E (2001) Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol 31(4–5):313–319CrossRefGoogle Scholar
  29. Lanning CL, Ayad HM, AbouDonia MB (1996) P-glycoprotein involvement in cuticular penetration of [C-14]thiodicarb in resistant tobacco budworms. Toxicol Lett 85(3):127–133CrossRefGoogle Scholar
  30. Ledirac N, Delescluse C, deSousa G, Pralavorio M, Lesca P, Amichot M et al (1997) Carbaryl induces CYP1A1 gene expression in HepG2 and HaCaT cells but is not a ligand of the human hepatic Ah receptor. Toxicol Appl Pharmacol 144(1):177–182CrossRefGoogle Scholar
  31. Lin CC, Hui MNY, Cheng SH (2007) Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos. Toxicol Appl Pharmacol 222(2):159–168CrossRefGoogle Scholar
  32. Litman T, Druley TE, Stein WD, Bates SE (2001) From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci 58(7):931–959CrossRefGoogle Scholar
  33. Matson CW, Clark BW, Jenny MJ, Fleming CR, Hahn ME, Di Giulio RT (2008) Development of the morpholino gene knockdown technique in Fundulus heteroclitus: a tool for studying molecular mechanisms in an established environmental model. Aquat Toxicol 87(4):289–295CrossRefGoogle Scholar
  34. McArthur A, Hegelund T, Cox R, Stegeman J, Liljenberg M, Olsson U et al (2003) Phylogenetic analysis of the cytochrome P450 3 (CYP3) gene family. J Mol Evol 57(2):200–211CrossRefGoogle Scholar
  35. Mekebri A, Crane DB, Blondina GJ, Oros DR, Rocca JL (2008) Extraction and analysis methods for the determination of pyrethroid insecticides in surface water, sediments and biological tissues at environmentally relevant concentrations. Bull Environ Contam Toxicol 80(5):455–460CrossRefGoogle Scholar
  36. Meyer J, Di Giulio R (2002) Patterns of heritability of decreased EROD activity and resistance to PCB 126-induced teratogenesis in laboratory-reared offspring of killifish (Fundulus heteroclitus) from a creosote-contaminated site in the Elizabeth River, VA, USA. Mar Environ Res 54(3–5):621–626CrossRefGoogle Scholar
  37. Meyer JN, Di Giulio RT (2003) Heritable adaptation and fitness costs in killifish (Fundulus beteroclitus) inhabiting a polluted estuary. Ecol Appl 13(2):490–503CrossRefGoogle Scholar
  38. Meyer JN, Nacci DE, Di Giulio RT (2002) Cytochrome P4501A (CYP1A) in killifish (Fundulus heteroclitus): heritability of altered expression and relationship to survival in contaminated sediments. Toxicol Sci 68(1):69–81CrossRefGoogle Scholar
  39. Meyer JN, Wassenberg DM, Karchner SI, Hahn ME, Di Giulio RT (2003) Expression and inducibility of aryl hydrocarbon receptor pathway genes in wild-caught killifish (Fundulus heteroclitus) with different contaminant-exposure histories. Environ Toxicol Chem 22(10):2337–2343CrossRefGoogle Scholar
  40. Mulvey M, Newman MC, Vogelbein W, Unger MA (2002) Genetic structure of Fundulus heteroclitus from PAH-contaminated and neighboring sites in the Elizabeth and York Rivers. Aquat Toxicol 61(3–4):195–209CrossRefGoogle Scholar
  41. Nacci D, Coiro L, Kuhn A, Champlin D, Munns W, Specker J et al (1998) Nondestructive indicator of ethoxyresorufin-O-deethylase activity in embryonic fish. Environ Toxicol Chem 17(12):2481–2486Google Scholar
  42. Nacci D, Coiro L, Champlin D, Jayaraman S, McKinney R, Gleason TR et al (1999) Adaptations of wild populations of the estuarine fish Fundulus heteroclitus to persistent environmental contaminants. Mar Biol 134(1):9–17CrossRefGoogle Scholar
  43. Nacci D, Champlin D, Jayaraman S (2010) Adaptation of the estuarine fish Fundulus heteroclitus (Atlantic killifish) to polychlorinated biphenyls (PCBs). Estuar Coasts 33(4):853–864CrossRefGoogle Scholar
  44. Ohkawa H, Kaneko H, Tsuji H, Miyamoto J (1979) Metabolsim of fenvalerate (Sumicidin) in rats. J Pestic Sci 4(2):143–155CrossRefGoogle Scholar
  45. Oppenoorth FJ, Vanderpas LJT, Houx NWH (1979) Glutathione-s-transferase and hydrolytic activity in a tetrachlorvinphos-resistant strain of housefly and their influence on resistance. Pestic Biochem Physiol 11(1–3):176–188CrossRefGoogle Scholar
  46. Ownby DR, Newman MC, Mulvey M, Vogelbein WK, Unger MA, Arzayus LF (2002) Fish (Fundulus heteroclitus) populations with different exposure histories differ in tolerance of creosote-contaminated sediments. Environ Toxicol Chem 21(9):1897–1902Google Scholar
  47. Prasch AL, Teraoka H, Carney SA, Dong W, Hiraga T, Stegeman JJ et al (2003) Aryl hydrocarbon receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. Toxicol Sci 76(1):138–150CrossRefGoogle Scholar
  48. Prince R, Cooper KR (1995) Comparisons of the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on chemically impacted and nonimpacted subpopulations of Fundulus heteroclitus 2. Metabolic considerations. Environ Toxicol Chem 14(4):589–595Google Scholar
  49. Roy NK, Courtenay S, Maxwell G, Yuan ZP, Chambers RC, Wirgin I (2002) Cytochrome P4501A1 is induced by PCB 77 and benzo[a] pyrene treatment but not by exposure to the Hudson River environment in Atlantic tomcod (Microgadus tomcod) post-yolk sac larvae. Biomarkers 7(2):162–173CrossRefGoogle Scholar
  50. Sapozhnikova Y, Bawardi O, Schlenk D (2004) Pesticides and PCBs in sediments and fish from the Salton Sea, California, USA. Chemosphere 55(6):797–809CrossRefGoogle Scholar
  51. Scharf ME, Meinke LJ, Wright RJ, Chandler LD, Siegfried BD (1999) Metabolism of carbaryl by insecticide-resistant and -susceptible western corn rootworm populations (Coleoptera: Chrysomelidae). Pestic Biochem Physiol 63(2):85–96CrossRefGoogle Scholar
  52. Schmidt B, Faymonville T, Gembe E, Joussen N, Schuphan I (2006) Comparison of the biotransformation of the C-14-labelled insecticide carbaryl by non-transformed and human CYP1A1-, CYP1A2-, and CYP3A4-transgenic cell cultures of Nicotiana tabacum. Chem Biodivers 3(8):878–896CrossRefGoogle Scholar
  53. Shea TB, Berry ES (1983) Toxicity of carbaryl and 1-naphthol to goldfish (Carassius auratus) and killifish (Fundulus heteroclitus). Bull Environ Contam Toxicol 31(5):526–529CrossRefGoogle Scholar
  54. Soderlund DM, Hessney CW, Jiang M (1987) Metabolism of fenvalerate by resistant Colorado potato beetles. J Agric Food Chem 35(1):100–105CrossRefGoogle Scholar
  55. Solomon HM, Weis JS (1979) Abnormal circulatory development in medaka caused by the insecticides carbaryl, malathion and parathion. Teratology 19(1):51–62CrossRefGoogle Scholar
  56. Srinivas R, Udikeri SS, Jayalakshmi SK, Sreeramulu K (2004) Identification of factors responsible for insecticide resistance in Helicoverpa armigera. Comp Biochem Physiol C Toxicol Pharmacol 137(3):261–269CrossRefGoogle Scholar
  57. Van Veld PA, Westbrook DJ (1995) Evidence for depression of cytochrome P4501A in a population of chemically resistant mummichog (Fundulus heteroclitus). Environ Sci 3:221–234Google Scholar
  58. Van Veld PA, Ko UC, Vogelbein WK, Westbrook DJ (1991) Glutathione-s-transferase in intestine, liver and hepatic lesions of mummichog (Fundulus heteroclitus) from a creosote-contaminated environment. Fish Physiol Biochem 9(4):369–376CrossRefGoogle Scholar
  59. Vogelbein W, Unger MA. 2003. The Elizabeth River monitoring program 2001–2002: association between mummichog liver histopathology and sediment chemical contamination. Final reportGoogle Scholar
  60. Vogelbein WK, Fournie JW, Vanveld PA, Huggett RJ (1990) Hepatic neoplasms in the mummichog Fundulus heteroclitus from a creosote-contaminated site. Cancer Res 50(18):5978–5986Google Scholar
  61. Walker SE, Dickhut RM, Chisholm-Brause C (2004) Polycyclic aromatic hydrocarbons in a highly industrialized urban estuary: inventories and trends. Environ Toxicol Chem 23(11):2655–2664CrossRefGoogle Scholar
  62. Wassenberg DM, Di Giulio RT (2004) Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus. Environ Health Perspect 112(17):1658–1664CrossRefGoogle Scholar
  63. Weeks BA, Warinner JE, Mathews ES (1988) Influence of toxicants on phagocytosis, pinocytosis and melanin accumulation by fish macrophages. Aquat Toxicol 11(3–4):424CrossRefGoogle Scholar
  64. Weis P, Weis JS (1974) Cardiac malformations and other effects due to insecticides in embryos of killifish, Fundulus heteroclitus. Teratology 10(3):263–267CrossRefGoogle Scholar
  65. Wills LP, Matson CW, Landon CD, Di Giulio RT (2010) Characterization of the recalcitrant CYP1 phenotype found in Atlantic killifish (Fundulus heteroclitus) inhabiting a Superfund site on the Elizabeth River, VA. Aquat Toxicol 99(1):33–41CrossRefGoogle Scholar
  66. Wirgin I, Waldman JR (2004) Resistance to contaminants in North American fish populations. Mutat Res Fundam Mol Mech Mutagen 552(1–2):73–100CrossRefGoogle Scholar
  67. Wu DX, Scharf ME, Neal JJ, Suiter DR, Bennett GW (1998) Mechanisms of fenvalerate resistance in the German cockroach, Blattella germanica (L.). Pestic Biochem Physiol 61(1):53–62CrossRefGoogle Scholar
  68. Yang Y, Wu Y, Chen S, Devine GJ, Denholm I, Jewess P et al (2004) The involvement of microsomal oxidases in pyrethroid resistance in Helicoverpa armigera from Asia. Insect Biochem Mol Biol 34(8):763–773CrossRefGoogle Scholar
  69. Yu SJ, McCord E (2007) Lack of cross-resistance to indoxacarb in insecticide-resistant Spodoptera frugiperda (Lepidoptera: Noctuidae) and Plutella xylostella (Lepidoptera: Yponomeutidaie). Pest Manag Sci 63(1):63–67CrossRefGoogle Scholar
  70. Zhao GY, Rose RL, Hodgson E, Roe RM (1996) Biochemical mechanisms and diagnostic microassays for pyrethroid, carbamate, and organophosphate insecticide resistance/cross-resistance in the tobacco budworm, Heliothis virescens. Pestic Biochem Physiol 56(3):183–195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Nicholas School of the Environment, Duke UniversityDurhamUSA

Personalised recommendations