, Volume 21, Issue 1, pp 148–154 | Cite as

Interactions of silver nanoparticles with the marine macroalga, Ulva lactuca

  • Andrew TurnerEmail author
  • David Brice
  • Murray T. Brown


The marine macroalga, Ulva lactuca, has been exposed for 48 h to different concentrations of Ag added as either silver nanoparticles (AgNP) or aqueous metal (AgNO3) and the resulting toxicity, estimated from reductions in quenching of chlorophyll-a fluorescence, and accumulation of Ag measured. Aqueous Ag was toxic at available concentrations as low as about 2.5 μg l−1 and exhibited considerable accumulation that could be defined by the Langmuir equation. AgNP were not phytotoxic to the macroalga at available Ag concentrations up to at least 15 μg l−1 and metal measured in U. lactuca was attributed to a physical association of nanoparticles at the algal surface. At higher AgNP concentrations, a dose–response relationship was observed that was similar to that for aqueous Ag recorded at much lower concentrations. These findings suggest that AgNP are only indirectly toxic to marine algae through the dissolution of Ag+ ions into bulk sea water, albeit at concentrations orders of magnitude greater than those predicted in the environment.


Silver nanoparticles Silver ions Sea water Ulva lactuca Toxicity Accumulation 



We thank Mr Andrew Atfield and Ms Haiying Li for advice on preparation of the nanoparticles, Mrs Angela Harrop for assistance with the algal culturing and fluorescence measurements, and Dr Andrew Fisher for undertaking the ICP-MS analysis.


  1. Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 4067:1461–1468Google Scholar
  2. Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:1–8CrossRefGoogle Scholar
  3. Bianchini A, Playle RC, Wood CM, Walsh PJ (2005) Mechanism of acute silver toxicity in marine invertebrates. Aquat Toxicol 72:67–82CrossRefGoogle Scholar
  4. Bilberg K, Malte H, Wang T, Baatrup E (2010) Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat Toxicol 96:159–165CrossRefGoogle Scholar
  5. Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47CrossRefGoogle Scholar
  6. Bradford A, Handy RD, Readman JW, Atfield A, Mühling M (2009) Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine waters. Environ Sci Technol 43:4530–4536CrossRefGoogle Scholar
  7. Cho K-H, Park J-E, Osaka T, Park S-G (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960CrossRefGoogle Scholar
  8. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490CrossRefGoogle Scholar
  9. Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978CrossRefGoogle Scholar
  10. Hall S, Bradley T, Moore JT, Kuykindall T, Minella L (2009) Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 3:91–97CrossRefGoogle Scholar
  11. Han T, Kang SH, Park JS, Lee HK, Brown MT (2008) Physiological responses of Ulva pertusa and U. armoricana to copper exposure. Aquat Toxicol 86:176–184CrossRefGoogle Scholar
  12. Hao LH, Wang ZY, Xing BS (2009) Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J Environ Sci China 21:1459–1466CrossRefGoogle Scholar
  13. Hartmann NB, von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269:190–197CrossRefGoogle Scholar
  14. Hassler CS, Slaveykova VI, Wilkinson KJ (2004) Discriminating between intra- and extracellular metals using chemical extractions. Limnol Oceanogr Method 2:237–247CrossRefGoogle Scholar
  15. Hiriart-Baer VP, Fortin C, Lee DY, Campbell PGC (2006) Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, grown under continuous culture conditions: influence of thiosulphate. Aquat Toxicol 78:136–148CrossRefGoogle Scholar
  16. Kamala-Kannan S, Batvari BPD, Lee KJ, Kannan N, Krishnamoorthy R, Shanthi K, Jayaprakash M (2007) Assessment of heavy metals (Cd, Cr nd Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, south east India. Chemosphere 71:1233–1240CrossRefGoogle Scholar
  17. Laban G, Nies LF, Turco RF, Bickham JW, Sepulveda MS (2010) The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19:185–195CrossRefGoogle Scholar
  18. Luoma SN, Ho YB, Bryan GW (1995) Fate, bioavailability and toxicity of silver in estuarine environments. Mar Pollut Bull 31:44–54CrossRefGoogle Scholar
  19. Miao A-J, Schwehr KA, Xu C, Zhang S-J, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041CrossRefGoogle Scholar
  20. Miller LA, Bruland KW (1995) Organic speciation of silver in marine waters. Environ Sci Technol 29:2616–2621CrossRefGoogle Scholar
  21. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964CrossRefGoogle Scholar
  22. Pedroso MS, Bersano JGF, Bianchini A (2007) Acute silver toxicity in the euryhaline copepod Acartia tonsa: influence of salinity and food. Environ Toxicol Chem 26:2158–2165CrossRefGoogle Scholar
  23. Petersen EJ, Akkanen J, Kukkonen JVK, Weber WJ (2009) Biological uptake and depuration of carbon nano-tubes by Daphnia magna. Environ Sci Technol 43:2969–2975CrossRefGoogle Scholar
  24. Reinfelder JR, Chang SI (1999) Speciation and microalgal bioavailability of inorganic silver. Environ Sci Technol 33:1860–1863Google Scholar
  25. Ringwood AH, McCarthy M, Bates TC, Carroll DL (2010) The effects of silver nanoparticles on oyster embryos. Mar Environ Res 69:S49–S51CrossRefGoogle Scholar
  26. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96CrossRefGoogle Scholar
  27. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci 275:177–182CrossRefGoogle Scholar
  28. Turner A, Rice L (2010) Toxicity of tire wear particle leachate to the marine macroalga, Ulva lactuca. Environ Pollut 158:3650–3654CrossRefGoogle Scholar
  29. Turner A, Pedroso S, Brown MT (2008) Influence of salinity and humic substances on the uptake of trace metals by the marine macroalga, Ulva lactuca: experimental observations and modelling using WHAM. Mar Chem 110:176–184CrossRefGoogle Scholar
  30. van Hoecke K, de Schamphelaere KAC, van der Meeren P, Lucas S, Janssen CR (2008) Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environ Toxicol Chem 27:1948–1957CrossRefGoogle Scholar
  31. Ward TJ, Kramer JR, Boeri RL, Gorsuch JW (2006) Chronic toxicity of silver to the sea urchin (Arbacia punctulata). Environ Toxicol Chem 25:1568–1573CrossRefGoogle Scholar
  32. Wood CM, Grosell M, McDonald MD, Playle RC, Walsh PJ (2010) Effects of waterborne silver in a marine teleost, the gulf toadfish (Opsanus beta): effects of feeding and chronic exposure on bioaccumulation. Aquat Toxicol 99:138–148CrossRefGoogle Scholar
  33. Zhu XS, Zhu L, Lang YP, Chen YS (2008) Oxidative stress and growth inhibition in the freshwater fish Carassius autatus induced by chronic exposure to sublethal fullerene aggregates. Environ Toxicol Chem 27:1979–1985CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Geography, Earth and Environmental SciencesUniversity of PlymouthDrake Circus, PlymouthUK
  2. 2.School of Marine Science and EngineeringUniversity of PlymouthDrake Circus, PlymouthUK

Personalised recommendations