Ecotoxicology

, Volume 21, Issue 1, pp 124–138 | Cite as

Induction of expression of a 14-3-3 gene in response to copper exposure in the marine alga, Fucus vesiculosus

  • Jennifer R. Owen
  • Ceri A. Morris
  • Beate Nicolaus
  • John L. Harwood
  • Peter Kille
Article

Abstract

The macro-alga Fucus vesiculosus has a broad global and estuarine distribution and exhibits exceptional resistance to toxic metals, the molecular basis of which is poorly understood. To address this issue a cDNA library was constructed from an environmental isolate of F. vesiculosus growing in an area with chronic copper pollution. Characterisation of this library led to the identification of a cDNA encoding a protein known to be synthesised in response to toxicity, a full length 14-3-3 exhibiting a 71% identity to human/mouse epsilon isoform, 70–71% identity to yeast BMH1/2 and 95 and 71% identity to the Ectocarpus siliculosus 14-3-3 isoforms 1 and 2 respectively. Preliminary characterisation of the expression profile of the 14-3-3 indicated concentration- and time-dependent inductions on acute exposure of F. vesiculosus of copper (3–30 μg/l). Higher concentrations of copper (≥150 μg/l) did not elicit significant induction of the 14-3-3 gene compared with the control even though levels of both intracellular copper and the expression of a cytosolic metal chaperone, metallothionein, continued to rise. Analysis of gene expression within environmental isolates demonstrated up-regulation of the 14-3-3 gene associated with the known copper pollution gradient. Here we report for the first time, identification of a gene encoding a putative 14-3-3 protein in a multicellular alga and provide preliminary evidence to link the induction of this 14-3-3 gene to copper exposure in this alga. Interestingly, the threshold exposure profile may be associated with a decrease in the organism’s ability to control copper influx so that it perceives copper as a toxic response.

Keywords

Phaeophyta Copper Toxicity 14-3-3 Gene expression 

Notes

Acknowledgments

We would like to thank Dr Martijs Jonker (Microarray Department and Integrative Bioinformatics Unit, University of Amsterdam, The Netherlands) for his assistance in the statistical analysis of the data and Dr. Dennis Francis (Cardiff School of Biosciences, Cardiff University) for helpful discussions. This work was made possible by a number of different awards including an EERO Fellowship to Dr B. Nicolaus and two awards supported by the Natural and Environmental Research Council under the ROPA scheme (GR3/R9694) and a Ph.D studentship GT04/99/MS/301. The project supervision was facilitated by the NERC continued support for Dr Kille through the Advanced Fellowship program (GT5/94/ALS).

References

  1. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor M (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52(5):399–451CrossRefGoogle Scholar
  2. Aitken A, Jones D, Soneji Y, Howell S (1995) 14-3-3-proteins: biological function and domain-structure. Biochem Soc Trans 23(3):605–611Google Scholar
  3. Aksamit A, Korobczak A, Skala J, Lukaszewicz M, Szopa J (2005) The 14-3-3 gene expression specificity in response to stress is promoter-dependent. Plant Cell Physiol 46(10):1635–1645CrossRefGoogle Scholar
  4. Athwal GS, Huber SC (2002) Divalent cations and polyamines bind to loop 8 of 14-3-3 proteins, modulating their interaction with phosphorylated nitrate reductase. Plant J 29(2):119–129CrossRefGoogle Scholar
  5. Barreiro R, Picado L, Real C (2002) Biomonitoring heavy metals in estuaries: a field comparison of two brown algae species inhabiting upper estuarine reaches. Environ Monit Assess 75(2):121–134CrossRefGoogle Scholar
  6. Berg D, Holzmann C, Riess O (2003) 14-3-3 proteins in the nervous system. Nat Rev Neurosci 4:752–762CrossRefGoogle Scholar
  7. Brown MT, Newman JE (2003) Physiological responses of Gracilariopsis longissima to sub- lethal copper concentrations. Aquat Toxicol 64(2):201–213CrossRefGoogle Scholar
  8. Bryan GW, Gibbs PE (1983) Heavy metals in the Fal estuary, cornwall: a study of long term contamination by mining waste and its effects on estuarine organisms. Occasional Publications of the Marine Biological Association (2):1–112Google Scholar
  9. Burridge TR, Bidwell J (2002) Review of the potential use of brown algal ecotoxicological assays in monitoring effluent discharge and pollution in Southern Australia. Mar Pollut Bull 45(1–12):140–147CrossRefGoogle Scholar
  10. Cairrao E, Pereira MJ, Pastorinho MR, Morgado F, Soares A, Guilhermino L (2007) Fucus spp. as a mercury contamination bioindicator in coastal areas (Northwestern Portugal). Bull Environ Contam Toxicol 79(4):388–395CrossRefGoogle Scholar
  11. Chaseley J (2003) Molecular mechanisms of copper trafficking in the marine macro-alga Fucus vesiculosus. PhD Thesis, Cardiff University, CardiffGoogle Scholar
  12. Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129(2):469–485CrossRefGoogle Scholar
  13. Cock JM, Sterck L, Rouze P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collen J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CMM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Kupper FC, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collen P, Peters AF, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, Segurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465(7298):617–621CrossRefGoogle Scholar
  14. Crescenzi KL (1984) Lipid metabolism and photosynthesis in the brown alga Fucus serratus. PhD thesis, University of Wales, CardiffGoogle Scholar
  15. Culotta VC, Liu XF, Schmidt P (1999) The transport and intracellular trafficking of metal ions in yeast. Metals and genetics Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  16. Dameron CT, Harrison MD (1998) Mechanisms for protection against copper toxicity. Am J Clin Nutr 67(5 Suppl):1091S–1097SGoogle Scholar
  17. Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57(3):246–273CrossRefGoogle Scholar
  18. Garrick MD, Nunez MT, Olivares M, Harris ED (2003) Parallels and contrasts between iron and copper metabolism. Biometals 16(1):1–8CrossRefGoogle Scholar
  19. Gelperin D, Weigle J, Nelson K, Roseboom P, Irie K, Matsumoto K, Lemmon S (1995) 14-3-3-proteins: potential roles in vesicular transport and Ras signaling in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 92(25):11539–11543CrossRefGoogle Scholar
  20. Giusti L (2001) Heavy metal contamination of brown seaweed and sediments from the UK coastline between the Wear river and the Tees river. Environ Int 26(4):275–286CrossRefGoogle Scholar
  21. Gordon AS, Donat JR, Kango RA, Dyer BJ, Stuart LM (2000) Dissolved copper-complexing ligands in cultures of marine bacteria and estuarine water. Mar Chem 70(1–3):149–160CrossRefGoogle Scholar
  22. Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763(7):595–608CrossRefGoogle Scholar
  23. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613CrossRefGoogle Scholar
  24. Heredia J, Crooks M, Zhu ZW (2001) Phosphorylation and Cu+ coordination-dependent DNA binding of the transcription factor Mac1p in the regulation of copper transport. J Biol Chem 276(12):8793–8797CrossRefGoogle Scholar
  25. Himelblau E, Amasino RM (2000) Delivering copper within plant cells. Curr Opin Plant Biol 3(3):205–210Google Scholar
  26. Huber SC (2007) Exploring the role of protein phosphorylation in plants: from signalling to metabolism. Biochem Soc Trans 35:28–32CrossRefGoogle Scholar
  27. Karez CS, Pereira RC (1995) Metal contents in polyphenolic fractions extracted from the brown alga Padina-gymnospora. Bot Marina 38(2):151–155CrossRefGoogle Scholar
  28. Klychnikov O, Li K, Lill H, de Boer A (2006) The V-ATPase from etiolated barley (Hordeum vulgare L.) shoots is activated by blue light and interacts with 14-3-3 proteins. J Exp Bot 58(5):1013–1023CrossRefGoogle Scholar
  29. Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581(12):2263–2272CrossRefGoogle Scholar
  30. Kumar S, Nei M, Dudley J, Tamura K (2008) Mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306CrossRefGoogle Scholar
  31. Kupper H, Setlik I, Spiller M, Kupper FC, Prasil O (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol 38(3):429–441Google Scholar
  32. Larsen AK, Escargueil AE, Skladanowski A (2003) From DNA damage to G2 arrest: the many roles of topoisomerase II. Prog Cell Cycle Res 5:295–300Google Scholar
  33. Martins LJ, Jensen LT, Simons JR, Keller GL, Winge DR (1998) Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273(37):23716–23721CrossRefGoogle Scholar
  34. Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, Terauchi AM (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim Biophys Acta 1763(7):578–594CrossRefGoogle Scholar
  35. Milton AH, Khaire N, Ingram L, O’Donnell AJ, La Thangue NB (2006) 14-3-3 proteins integrate E2F activity with the DNA damage response. EMBO (Eur Mol Biol Org) J 25(5):1046–1057CrossRefGoogle Scholar
  36. Morris CA, Nicolaus B, Sampson V, Harwood JL, Kille P (1999) Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Biochem J 338:553–560CrossRefGoogle Scholar
  37. Nielsen HD, Nielsen SL (2005) Photosynthetic responses to Cu2+ exposure are independent of light acclimation and uncoupled from growth inhibition in Fucus serratus (phaeophyceae). Mar Pollut Bull 51(8–12):715–721CrossRefGoogle Scholar
  38. Nielsen HD, Brownlee C, Coelho SM, Brown MT (2003) Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytol 160(1):157–165CrossRefGoogle Scholar
  39. Nielsen HD, Burridge TR, Brownlee C, Brown MT (2005) Prior exposure to Cu contamination influences the outcome of toxicological testing of Fucus serratus embryos. Mar Pollut Bull 50(12):1675–1680CrossRefGoogle Scholar
  40. Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane-protein. J Biol Chem 270(9):4721–4728CrossRefGoogle Scholar
  41. Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Ann Rev Plant Physiol Plant Mol Biol 52:817–845CrossRefGoogle Scholar
  42. Palmgren MG, Harper JF (1999) Pumping with plant P-type ATPases. J Exp Bot 50:883–893CrossRefGoogle Scholar
  43. Paul AL, Liu L, McClung S, Laughner B, Chen S, Ferl RJ (2009) Comparative interactomics: analysis of Arabidopsis 14-3-3 complexes reveals highly conserved 14-3-3 interactions between humans and plants. J Proteome Res 8(4):1913–1924CrossRefGoogle Scholar
  44. Pawlik-Skowronska B, Pirszel J, Brown MT (2007) Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat. Aquat Toxicol 83(3):190–199CrossRefGoogle Scholar
  45. Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev Cambridge Philos Soc 56:99–151CrossRefGoogle Scholar
  46. Reed RH, Gadd GM (1990) Metal tolerance in eukaryotic and prokaryotic algae. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, LondonGoogle Scholar
  47. Roberts MR (2003) 14-3-3 proteins find new partners in plant cell signalling. Trends Plant Sci 8(5):218–223CrossRefGoogle Scholar
  48. Rosenquist M, Sehnke P, Ferl RJ, Sommarin M, Larsson C (2000) Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity? J Mol Evol 51(5):446–458Google Scholar
  49. Salgado LT, Andrade LR, Amado GM (2005) Localization of specific monosaccharides in cells of the brown alga Padina gymnospora and the relation to heavy-metal accumulation. Protoplasma 225(1–2):123–128CrossRefGoogle Scholar
  50. Sehnke PC, Chung HJ, Wu K, Ferl RJ (2001) Regulation of starch accumulation by granule-associated plant 14-3-3 proteins. Proc Natl Acad Sci USA 98(2):765–770CrossRefGoogle Scholar
  51. Smith KL, Douce R, Harwood JL (1982) Phospholipid metabolism in the brown alga, Fucus serratus. Phytochemistry 21(3):569–573CrossRefGoogle Scholar
  52. Smith KL, Bryan GW, Harwood JL (1984) Changes in the lipid metabolism of Fucus serratus and Fucus vesiculosus caused by copper. Biochim Biophys Acta 796(1):119–122Google Scholar
  53. Smith KL, Hann AC, Harwood JL (1986) The subcellular localisation of absorbed copper in Fucus. Physiol Plant 66(4):692–698CrossRefGoogle Scholar
  54. Sokal RR, Rohlf FJ (1995) Two-way analysis of variance. In: Sokal RR, Rohlf FJ (eds) Biometry, the principles and practice of statistics in biological research, 3rd edn. Freeman and Co, San Francisco, pp 589–591Google Scholar
  55. Telles E, Hosing AS, Kundu ST, Venkatraman P, Dalal SN (2009) A novel pocket in 14-3-3epsilon is required to mediate specific complex formation with cdc25C and to inhibit cell cycle progression upon activation of checkpoint pathways. Exp Cell Res 315(8):1448–1457CrossRefGoogle Scholar
  56. Toth G, Pavia H (2000) Lack of phlorotannin induction in the brown seaweed Ascophyllum nodosum in response to increased copper concentrations. Mar Ecol-Prog Series 192:119–126CrossRefGoogle Scholar
  57. Voskoboinik I, Fernando R, Veldhuis N, Hannan KM, Marmy-Conus N, Pearson RB, Camakaris J (2003) Protein kinase-dependent phosphorylation of the Menkes copper P-type ATPase. Biochem Biophys Res Commun 303(1):337–342CrossRefGoogle Scholar
  58. Wang YH, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130(3):1361–1370CrossRefGoogle Scholar
  59. Weber CK, Slupsky JR, Kalmes HA, Rapp UR (2001) Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 61(9):3595–3598Google Scholar
  60. Yamazaki T, Yamazaki A, Hibino Y, Chowdhury SA, Yokote Y, Kanda Y, Kunii S, Sakagami H, Nakajima H, Shimada J (2006) Biological impact of contact with metals on cells. In Vivo 20(5):605–611Google Scholar
  61. Zhai Q, Zheng A, Yu X, Sun L, Liu X (2000) Copper induces apoptosis in Ba/F3 beta cells: Bax, reactive oxygen species and NFkappaB are involved. J Cell Physiol 184:161–170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jennifer R. Owen
    • 1
  • Ceri A. Morris
    • 1
  • Beate Nicolaus
    • 1
  • John L. Harwood
    • 1
  • Peter Kille
    • 1
  1. 1.School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations