, 20:2030 | Cite as

Induction of apoptosis in mussel Mytilus galloprovincialis gills by model cytotoxic agents

  • A. Châtel
  • B. Hamer
  • Ž. Jakšić
  • V. Vucelić
  • H. Talarmin
  • G. Dorange
  • H. C. Schröder
  • W. E. G. Müller


Apoptosis signaling pathway was investigated in the marine mussel Mytilus galloprovincialis exposed to various stressors. Analyses were performed in mussels exposed to two major pollutants of the aquatic environment: tributyltin and the water soluble fraction of diesel oil, for 1 h and animals were then maintained in sea water for a recovery period of 6 and 24 h. Apoptosis was evaluated at several levels of the cell signaling cascade by measuring Bcl-xS expression, caspase-3 activity and DNA damage (Fast micromethod® and TUNEL techniques). H2O2 was used as a control of apoptosis induction for validation of the assays. Results showed an induction of Bcl-xS expression, a protein implicated in apoptosis, after 1 h exposure to all concentrations of chemicals. Moreover, in the same manner, apoptotic DNA damage was induced with all chemicals tested. Besides, caspase 3 activity was detected after 1 h exposure to low doses of TBT and diesel oil while the high concentrations induced this protein after 6 h. The achieved data were also correlated with our previous study, demonstrating an induction of the mitogen-activated protein kinase (MAPK) activity in the mussel M. galloprovincialis exposed to the same conditions. In conclusion, this study was one of the first characterizing the MAP kinase cell signaling pathway leading to apoptosis in the mussel M. galloprovincialis exposed to chemicals. It showed for the first time that the Bcl-xS protein was present in these mussels as in other species and played a role in apoptosis mediation. Moreover, the main originality of this work was that it showed that two apoptotic pathways might be present in the mussel: a caspase 3-dependent and a caspase 3-independent pathways.


Biomarker Apoptosis Bcl-xS Caspase DNA damage Mytilus galloprovincialis 


  1. Abele D, Heise K, Portner HO, Puntarulo S (2002) Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205:1831–1841Google Scholar
  2. Afolabi AO, Imevbore AMA, Adeyemi SA (1985) Studies on the toxicity of some Nigerian crude oils to some aquatic organisms. Proceedings of the seminar on the petroleum industry and the Nigerian environment. Port-Harcourt, Nigeria, pp 269–273Google Scholar
  3. Banni M, Negri A, Rebelo M, Rapallo F, Boussetta H, Viarengo A, Dondero F (2009) Expression analysis of the molluscan p53 protein family mRNA in mussels (Mytilus spp.) exposed to organic contaminants. Comp Biochem Physiol C Toxicol Pharmacol 149:414–418CrossRefGoogle Scholar
  4. Bihari N, Hamer B, Jaksic Z, Fafandel M, Micic M, Batel R (2002) Application of alkaline elution, fast micromethod and flow cytometry in detection of marine contamination. Cell Mol Biol (Noisy-le-grand) 48:373–377Google Scholar
  5. Bihari N, Fafandel M, Piskur V (2007) Polycyclic aromatic hydrocarbons and ecotoxicological characterization of seawater, sediment, and mussel Mytilus galloprovincialis from the Gulf of Rijeka, the Adriatic Sea, Croatia. Arch Environ Contam Toxicol 52(3):379–387CrossRefGoogle Scholar
  6. Böhm M, Schröder HC, Müller IM, Müller WE, Gamulin V (2000) The mitogen-activated protein kinase p38 pathway is conserved in metazoans: cloning and activation of p38 of the SAPK2 subfamily from the sponge Suberites domuncula. Biol Cell 92:95–104CrossRefGoogle Scholar
  7. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608CrossRefGoogle Scholar
  8. Bolognesi C, Rabboni R, Roggieri P (1996) Genotoxicity biomarkers in M. galloprovincialis as indicators of marine pollutants. Comp Biochem Physiol 113:319–323Google Scholar
  9. Böttger S, Jerszyk E, Low B, Walker C (2008) Genotoxic stress-induced expression of p53 and apoptosis in leukemic clam hemocytes with cytoplasmically sequestered p53. Cancer Res 68:777–782CrossRefGoogle Scholar
  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  11. Burgeot T, Woll S, Galgani F (1996) Evaluation of the micronucleus test on Mytilus galloprovincialis for monitoring applications along French coasts. Mar Pollut Bull 32:39–46CrossRefGoogle Scholar
  12. Cajaraville MP, Bebianno MJ, Blasco J, Porte C, Sarasquete C, Viarengo A (2000) The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach. Sci Total Environ 247:295–311CrossRefGoogle Scholar
  13. Cande C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727–4734CrossRefGoogle Scholar
  14. Châtel A, Hamer B, Talarmin H, Dorange G, Schröder HC, Müller WE (2010) Activation of MAP kinase signaling pathway in the mussel Mytilus galloprovincialis as biomarker of environmental pollution. Aquat Toxicol 96:247–255CrossRefGoogle Scholar
  15. Chen YR, Tan TH (1998) Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene 17:173–178CrossRefGoogle Scholar
  16. Chen S, Nguyen N, Tamura K, Karin M, Tukey RH (2003) The role of the Ah receptor and p38 in benzo[a]pyrene-7, 8-dihydrodiol and benzo[a]pyrene-7, 8-dihydrodiol-9, 10-epoxide-induced apoptosis. J Biol Chem 278:19526–19533CrossRefGoogle Scholar
  17. Chiu CT, Yeh TS, Hsu JC, Chen MF (2003) Expression of Bcl-2 family modulated through p53-dependent pathway in human hepatocellular carcinoma. Dig Dis Sci 48:670–676CrossRefGoogle Scholar
  18. De Luca-Abbott SB, Richardson BJ, McClellan KE, Zheng GJ, Martin M, Lam PK (2005) Field validation of antioxidant enzyme biomarkers in mussels (Perna viridis) and clams (Ruditapes philippinarum) transplanted in Hong Kong coastal waters. Mar Pollut Bull 51:694–707CrossRefGoogle Scholar
  19. Dixon EP, Stephenson DT, Clemens JA, Little SP (1997) Bcl-Xshort is elevated following severe global ischemia in rat brains. Brain Res 776:222–229CrossRefGoogle Scholar
  20. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50CrossRefGoogle Scholar
  21. Fafandel M, Müller WEG, Batel R (2003) Molecular response to TBT stress in marine sponge Suberites domuncula: proteolytical cleavage and phosphorylation of KRS_SD protein kinase. J Exp Mar Biol Ecol 297:239–252CrossRefGoogle Scholar
  22. Fang W, Rivard JJ, Mueller DL, Behrens TW (1994) Cloning and molecular characterization of mouse bcl-x in B and T lymphocytes. J Immunol 153:4388–4398Google Scholar
  23. Fraser AG, Evan GI (1997) Identification of a Drosophila melanogaster ICE/CED-3-related protease, drICE. EMBO J 16:2805–2813CrossRefGoogle Scholar
  24. Gambaro A, Manodori L, Toscano G, Contini D, Donateo A, Belosi F, Prodi F, Cescon P (2007) Pahs and trace elements in PM(2.5) at the Venice Lagoon. Ann Chim 97:343–358CrossRefGoogle Scholar
  25. Gonzalez-Garcia M, Perez-Ballestero R, Ding L, Boise LH, Thompson CB, Nunez G (1994) bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development 120:3033–3042Google Scholar
  26. Gorinstein S, Jung T, Moncheva S, Arancibia-Avila P, Park YS, Kang SG, Goshev I, Trakhtenberg S, Namiesnik J (2005) Partial characterization of proteins from mussel Mytilus galloprovincialis as a biomarker of contamination. Arch Environ Contam Toxicol 49:504–510CrossRefGoogle Scholar
  27. Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281:9–19CrossRefGoogle Scholar
  28. Hamer B, Jakšić Ž, Pavičić-Hamer D, Perić L, Medaković D, Ivanković D, Pavičić J, Zilberberg C, Schröder HC, Müller WEG, Smodlaka N, Batel R (2008) Effect of hypoosmotic stress by low salinity acclimation of Mediterranean mussel Mytilus galloprovincialis on biological parameters used for pollution assessment. Aquat Toxicol 89:137–151CrossRefGoogle Scholar
  29. Heermeier K, Benedict M, Li M, Furth P, Nunez G, Hennighausen L (1996) Bax and Bcl-xs are induced at the onset of apoptosis in involuting mammary epithelial cells. Mech Dev 56:197–207CrossRefGoogle Scholar
  30. Hughes FM, Foster B, Grewal S, Sokolova IM (2010) Apoptosis as a host defense mechanism in Crassostrea virginica and its modulation by Perkinsus marinus. Fish Shellfish Immunol 29:247–257CrossRefGoogle Scholar
  31. Igase M, Okura T, Kitami Y, Hiwada K (1999) Apoptosis and bcl-xS in the intimal thickening of ballon-injured carotid arteries. Clin Sci 96:605–612CrossRefGoogle Scholar
  32. Jaksic Z, Batel R (2003) DNA integrity determination in marine invertebrates by Fast Micromethod. Aquat Toxicol 65:361–376CrossRefGoogle Scholar
  33. Jaksic Z, Batel R, Bihari N, Micic M, Zahn RK (2005) Adriatic coast as a microcosm for global genotoxic marine contamination: a long-term field study. Mar Pollut Bull 50:1314–1327CrossRefGoogle Scholar
  34. Kefaloyianni E, Gourgou E, Ferle V, Kotsakis E, Gaitanaki C, Beis I (2005) Acute thermal stress and various heavy metals induce tissue-specific pro- or anti-apoptotic events via the p38-MAPK signal transduction pathway in Mytilus galloprovincialis (Lam.). J Exp Biol 208:4427–4436CrossRefGoogle Scholar
  35. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257CrossRefGoogle Scholar
  36. Kimbrough RD (1976) Toxicity and health effects of selected organotin compounds: a review. Environ Health Perspect 14:51–56CrossRefGoogle Scholar
  37. Kruszewski M, Green MH, Lowe JE, Szumiel I (1994) DNA strand breakage, cytotoxicity and mutagenicity of hydrogen peroxide treatment at 4 degrees C and 37 degrees C in L5178Y sublines. Mutat Res 308:233–241CrossRefGoogle Scholar
  38. Lacoste A, Jalabert F, Malham SK, Cueff A, Poulet SA (2001) Stress and stress induced neuroendocrine changes increase the susceptibility of juvenile oysters (Crassostrea gigas) to Vibrio splendidus. Appl Environ Microbiol 67:2304–2309CrossRefGoogle Scholar
  39. Landvik NE, Gorria M, Arlt VM, Asare N, Solhaug A, Lagadic-Gossmann D, Holme JA (2007) Effects of nitrated-polycyclic aromatic hydrocarbons and diesel exhaust particle extracts on cell signalling related to apoptosis: possible implications for their mutagenic and carcinogenic effects. Toxicology 231:159–174CrossRefGoogle Scholar
  40. Lannig G, Flores JF, Sokolova IM (2006) Temperature-dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters. Aquat Toxicol 79:278–287CrossRefGoogle Scholar
  41. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99CrossRefGoogle Scholar
  42. Li BH, Zhou YB, Guo SB, Wang CB (2007) Polypeptide from Chlamys farreri inhibits UVB-induced HaCaT cells apoptosis via inhibition CD95 pathway and reactive oxygen species. Free Radic Res 41:1224–1232CrossRefGoogle Scholar
  43. Lindenboim L, Yuan J, Stein R (2000) Bcl-xS and Bax induce different apoptotic pathways in PC12 cells. Oncogene 19:1783–1793CrossRefGoogle Scholar
  44. Lindenboim L, Schlipf S, Kaufmann T, Borner C, Stein R (2004) Bcl-x(S) induces an NGF-inhibitable cytochrome c release. Exp Cell Res 297:392–403CrossRefGoogle Scholar
  45. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184CrossRefGoogle Scholar
  46. Micic M, Bihari N, Labura Z, Muller WE, Batel R (2001) Induction of apoptosis in the blue mussel Mytilus galloprovincialis by tri-n-butyltin chloride. Aquat Toxicol 55:61–73CrossRefGoogle Scholar
  47. Micic M, Bihari N, Jaksic Z, Muller WE, Batel R (2002) DNA damage and apoptosis in the mussel Mytilus galloprovincialis. Mar Environ Res 53:243–262CrossRefGoogle Scholar
  48. Minn AJ, Boise LH, Thompson CB (1996) Bcl-x(S) anatagonizes the protective effects of Bcl-x(L). J Biol Chem 271:6306–6312CrossRefGoogle Scholar
  49. Morishima Y, Gotoh Y, Zieg J, Barrett T, Takano H, Flavell R, Davis RJ, Shirasaki Y, Greenberg ME (2001) Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci 21:7551–7560Google Scholar
  50. Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256:12–18CrossRefGoogle Scholar
  51. Nakatsu Y, Kotake Y, Ohta S (2007) Concentration dependence of the mechanisms of tributyltin-induced apoptosis. Toxicol Sci 97:438–447CrossRefGoogle Scholar
  52. Nicholson DW, Thornberry NA (1997) Caspases—killer proteases. Trends Biochem Sci 22:299–306CrossRefGoogle Scholar
  53. Nishikawa T, Nakamura T, Fukushima A, Takagi Y (2005) Further evaluation of the skin micronucleus test: results obtained using 10 polycyclic aromatic hydrocarbons. Mutat Res 588:58–63Google Scholar
  54. Owuor ED, Kong AN (2002) Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol 64:765–770CrossRefGoogle Scholar
  55. Pelkonen O, Nebert DW (1982) Metabolism of polycyclic aromatic hydrocarbons: etiologic role in carcinogenesis. Pharmacol Rev 34:189–222Google Scholar
  56. Petrovic S, Semencic L, Ozretic B, Ozretic M (2004) Seasonal variations of physiological and cellular biomarkers and their use in the biomonitoring of north Adriatic coastal waters (Croatia). Mar Pollut Bull 49:713–720CrossRefGoogle Scholar
  57. Phillips DH, Grover PL (1984) Biologically-active and chemically-reactive polycyclic hydrocarbon metabolites. IARC Sci Publ 59:47–61Google Scholar
  58. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Diff 6:99–104CrossRefGoogle Scholar
  59. Pruski AM, Dixon DR (2002) Effects of cadmium on nuclear integrity and DNA repair efficiency in the gill cells of Mytilus edulis. Aquat Toxicol 57:127–137CrossRefGoogle Scholar
  60. Rummel AM, Trosko JE, Wilson MR, Upham BL (1999) Polycyclic aromatic hydrocarbons with bay-like regions inhibited gap junctional intercellular communication and stimulated MAPK activity. Toxicol Sci 49:232–240CrossRefGoogle Scholar
  61. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446CrossRefGoogle Scholar
  62. Santovito G, Piccinni E, Cassini A, Irato P, Albergoni V (2005) Antioxidant responses of the Mediterranean mussel, Mytilus galloprovincialis, to environmental variability of dissolved oxygen. Comp Biochem Physiol C Toxicol Pharmacol 140:321–329CrossRefGoogle Scholar
  63. Schwartzman RA, Cidlowski JA (1993) Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 14:133–151Google Scholar
  64. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487CrossRefGoogle Scholar
  65. Shou Y, Li N, Li L, Borowitz JL, Isom GE (2002) NF-kappaB-mediated upregulation of Bcl-XS and Bax contributes to cytochrome c release in cyanide-induced apoptosis. J Neurochem 81:842–852CrossRefGoogle Scholar
  66. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191CrossRefGoogle Scholar
  67. Siu WH, Cao J, Jack RW, Wu RS, Richardson BJ, Xu L, Lam PK (2004) Application of the comet and micronucleus assays to the detection of B[a]P genotoxicity in haemocytes of the green-lipped mussel (Perna viridis). Aquat Toxicol 66:381–392CrossRefGoogle Scholar
  68. Sole M, Porte C, Albaiges J (1994) Mixed-function oxygenase system components and antioxidant enzymes in different marine bivalves: its relation with contaminant body burdens. Aquat Toxicol 30:271–283CrossRefGoogle Scholar
  69. Stridh H, Kimland M, Jones DP, Orrenius S, Hampton MB (1998) Cytochrome c release and caspase activation in hydrogen peroxide- and tributyltin-induced apoptosis. FEBS Lett 429:351–355CrossRefGoogle Scholar
  70. Tait SW, Green DR (2008) Caspase-independent cell death: leaving the set without the final cut. Oncogene 27:6452–6461CrossRefGoogle Scholar
  71. Tanabe S, Senthilkumar K, Kannan K, Subramanian AN (1998) Accumulation features of polychlorinated biphenyls and organochlorine pesticides in resident and migratory birds from south India. Arch Environ Contam Toxicol 34:387–397CrossRefGoogle Scholar
  72. Torres-Bugarin O, De Anda-Casillas A, Ramirez-Munoz MP, Sanchez-Corona J, Cantu JM, Zuniga G (1998) Determination of diesel genotoxicity in firebreathers by micronuclei and nuclear abnormalities in buccal mucosa. Mutat Res 413:277–281Google Scholar
  73. Tort MJ, Pasnik DJ, Fernandez-Cobas C, Wooster GA, Bowser PR (2002) Quantitative scoring of gill pathology of Walleyes exposed to hydrogen peroxide. J Aquat Anim Health 14:154–159CrossRefGoogle Scholar
  74. van Loo G, Schotte P, van Gurp M, Demol H, Hoorelbeke B, Gevaert K, Rodriguez I, Ruiz-Carrillo A, Vandekerckhove J, Declercq W, Beyaert R, Vandenabeele P (2001) Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase independent DNA degradation. Cell Death Differ 8:1136–1142CrossRefGoogle Scholar
  75. Venier P, Maron S, Canova S (1997) Detection of micronuclei in gill cells and haemocytes of mussels exposed to benzo[a]pyrene. Mutat Res 390:33–44Google Scholar
  76. Viarengo A, Canesi L (1991) Mussels as biological indicators of pollution. Aquaculture 94:243CrossRefGoogle Scholar
  77. Visvardis EE, Tassiou AM, Piperakis SM (1997) Study of DNA damage induction and repair capacity of fresh and cryopreserved lymphocytes exposed to H2O2 and gamma irradiation with the alkaline comet assay. Mutat Res 383:71–80Google Scholar
  78. Volkman JK (2006) Biomarkers, isotopes and DNA 1. Marine organic matter. Water Res 29:1877–1884Google Scholar
  79. von Sonntag C (1987) New aspects in the free-radical chemistry of pyrimidine nucleobases. Free Radic Res Commun 2:217–224CrossRefGoogle Scholar
  80. Wang Y, Wang C, Zhang J, Chen Y, Zuo Z (2009) DNA hypomethylation induced by tributyltin, triphenyltin, and a mixture of these in Sebastiscus marmoratus liver. Aquat Toxicol 95:93–98CrossRefGoogle Scholar
  81. White KL Jr, Kawabata TT, Ladics GS (1994) Mechanisms of polycyclic aromatic hydrocarbon immunotoxicity. In: Dean JH, Luster MI, Munson AE, Kimber I (eds) Immunotoxicology and immunopharmacology, 2nd edn. Raven Press, New York, pp 123–142Google Scholar
  82. Woodhead RJ, Law RJ, Matthiessen P (1999) Polycyclic aromatic hydrocarbons in surface sediments around England and Wales and their possible biological significance. Mar Pollut Bull 38:773–790CrossRefGoogle Scholar
  83. Wyllie AH, Kerr JFR, Cutuue AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306CrossRefGoogle Scholar
  84. Yuan JY, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 β converting enzyme. Cell 75:641–652CrossRefGoogle Scholar
  85. Zhang JH, Xu M (2000) DNA fragmentation in apoptosis. Cell Res 10:205–211CrossRefGoogle Scholar
  86. Zheng TS, Schlosser SF, Dao T, Hingorani R, Crispe IN, Boyer JL, Flavell RA (1998) Caspase-3 controls both cytoplasmic and nuclear events associated with Fas mediated apoptosis in vivo. Proc Natl Acad Sci USA 95:13618–13623CrossRefGoogle Scholar
  87. Zhuang S, Yan Y, Daubert RA, Han J, Schnellmann RG (2007) ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells. Am J Physiol Renal Physiol 292:440–447CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Châtel
    • 1
    • 4
  • B. Hamer
    • 2
  • Ž. Jakšić
    • 2
  • V. Vucelić
    • 3
  • H. Talarmin
    • 1
  • G. Dorange
    • 1
  • H. C. Schröder
    • 4
  • W. E. G. Müller
    • 4
  1. 1.EA 4326 Facteurs nerveux et structuration tissulaireUniversité de Bretagne OccidentaleBrest cedexFrance
  2. 2.Ruđer Bošković Institute, Center for Marine ResearchLaboratory for Marine Molecular BiologyRovinjCroatia
  3. 3.Teaching Institute of Public Health, Primorsko-Goranska County, Medical FacultyUniversity of RijekaRijekaCroatia
  4. 4.Institute for Physiological ChemistryJohannes Gutenberg UniversityMainzGermany

Personalised recommendations