Advertisement

Ecotoxicology

, 20:1932 | Cite as

Outdoor Terrestrial Model Ecosystems are suitable to detect pesticide effects on soil fauna: design and method development

  • B. Scholz-StarkeEmail author
  • A. Nikolakis
  • T. Leicher
  • C. Lechelt-Kunze
  • F. Heimbach
  • B. Theißen
  • A. Toschki
  • H. T. Ratte
  • A. Schäffer
  • M. Roß-Nickoll
Article

Abstract

Terrestrial Model Ecosystems (TME) were developed as one higher-tier option to detect and assess effects of pesticides on soil communities in a 1 year study using lindane (gamma-HCH) as a persistent and toxic reference pesticide. TME contained intact soil cores (diameter 300 mm, height 400 mm) including indigenous soil communities of undisturbed grassland. Forty units were placed outdoors between spring 2005 and 2006. The TME experiment was designed to provide data that fulfill the requirements of the revised European regulation on plant protection products (regulation 1107/2009/EEC replacing guideline 91/414/EC) with a focus on structural endpoints such as soil organisms and their community structure in case higher-tier evaluation is triggered. The key objective was to evaluate the dynamics and stability of species-diverse microarthropod communities of undisturbed grassland over at least 1 year after application. In grassland soils, less selection pressure towards insensitive species compared to arable land was presumed. Sufficient numbers of organisms and numerous TME replicates ensured that a statistical evaluation could be performed to estimate the sensitivity of the organisms upon application of lindane applied at high rates of 7.5 and 75 kg ai/ha. The application rates resulted in nominal concentrations of 10 and 100 mg ai/kg dry soil referred to the top 5 cm soil layer of 10 TME each; 20 untreated TME served as controls and were used to study the natural dynamics and the variability of populations under field conditions. Results showed that the grassland from which the soil cores were sampled contained communities of soil organisms marked by typical diversity of improved grassland. Lindane applied at excessive rates caused clear dose-related and long-lasting effects on the communities of microarthropods. On the contrary, lumbricids, the total feeding activity (bait lamina) and the growth of plant biomass were not affected up to 1 year after application. Based on the results of this study using a toxic reference insecticide, the methodology seems to be suitable for use in the regulatory context of the assessment of pesticides once protection goals, data requirements and the conceptual framework are defined.

Keywords

Terrestrial Model Ecosystems (TME) Soil communities Lindane Environmental risk assessment 

References

  1. Becker H (1991) Bodenorganismen—Prüfungskategorien der Forschung. Umweltwissenschaften und Schadstoff-Forschung 3:19–24CrossRefGoogle Scholar
  2. Begon ME, Harper JL, Townsend CR (1998) Ökologie. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  3. Boyle TP, Smillie GM, Anderson JC, Beeson DR (1990) A sensitivity analysis of nine diversity and seven similarity indices. Res J Water Pollut Control Fed 62:749–762Google Scholar
  4. Bretfeld G (1999) Synopses on palearctic collembola, volume 2: symphypleona. Abhandlungen und Berichte des Naturkundemuseum Görlitz 71:1–318Google Scholar
  5. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) (2001) SIDS Initial Assessment Report for SIAM 13-dimethylformamide. Bad Godesberg, Bonn, pp 1–287Google Scholar
  6. Cairns J (1984) Are single species toxicity tests alone adequate for estimating environmental hazard? Environ Monit Assess 4:259–273CrossRefGoogle Scholar
  7. Christian E, Zicsi A (2005) Ein synoptischer Bestimmungsschlüssel der Regenwürmer Österreichs. Die Bodenkultur 50:121–131Google Scholar
  8. Cianciolo JM, Norton RA (2006) The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Exp Appl Acarol 40:1–25CrossRefGoogle Scholar
  9. Coleman DC (2008) From peds to paradoxes: linkages between soil biota and their influences on ecological processes. Soil Biol Biochem 40:271–289CrossRefGoogle Scholar
  10. Daehler CC, Strong DR (1996) Can you bottle nature? The roles of microcosms in ecological research. Ecology 77:663–664CrossRefGoogle Scholar
  11. Engels M, Ratte HT (1992) Randomisierte Änlichkeitsanalyse von Lebensgemeinschaften am Beispiel von Mesokosmos-Versuchen in der Ökotoxikologie. Verhandlungen der Gesellschaft für Ökologie 21:303–308Google Scholar
  12. European Commission (2000) Commission Decision of 20 December 2000 concerning the non-inclusion of lindane in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant-protection products containing this active substance (2000/801/EC). Off J Eur Communities L 324:42–43Google Scholar
  13. European Commission (2002) Draft working document. Guidance Document on Terrestrial Ecotoxicology under Council Directive 91/414/EEC. SANCO/10329/2002 rev. 2 final. European Commission, BrusselsGoogle Scholar
  14. European Commission (2009) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC Off J Eur Union L 309:1–50Google Scholar
  15. European Food Safety Authority (2009) Critical comparison of available and potential higher tier testing approaches for the risk assessment of plant protection products, considering at least field and semi-field experimental designs, extrapolation from dose–response relationships, and increased dosages (aquatic and terrestrial). CFT/EFSA/PPR/2008/1. Lot 4:1–194Google Scholar
  16. FAO/WHO (1968) 1967 Evaluations of some pesticide residues in food. FAO/PL:1967/M/11/1; WHO/Food Add./68.30Google Scholar
  17. Filzek PDB, Spurgeon DJ, Broll G, Svendsen C, Hankard PK, Parekh N, Stubberud HE, Weeks JM (2004) Metal effects on soil invertebrate feeding: measurements using the Bait Lamina method. Ecotoxicology 13:807–816CrossRefGoogle Scholar
  18. Fjellberg A (1980) Identification keys to Norwegian Collembola. Norsk Entomologist Forening, NorwayGoogle Scholar
  19. Fjellberg A (1998) The Collembola of Fennoscandia and Denmark. Part I: Poduromorpha. Fauna Entomologica Scandinavica, vol 38. Brill, LeidenGoogle Scholar
  20. Förster B, Van Gestel CAM, Koolhaas JEE, Nentwig G, Rodrigues JML, Sousa JP, Jones SE, Knacker T (2004) Ring-testing and field-validation of a terrestrial model ecosystem (TME)—an instrument for testing potentially harmful substances: effects of carbendazim on organic matter breakdown and soil fauna feeding activity. Ecotoxicology 13:129–141CrossRefGoogle Scholar
  21. Frampton GK, Van den Brink PJ (2007) Collembola and macroarthropod community responses to carbamate, organophosphate and synthetic pyrethroid insecticides: direct and indirect effects. Environ Pollut 147:14–25CrossRefGoogle Scholar
  22. Frampton GK, Jänsch S, Scott-Fordsmand JJ, Römbke J, Van den Brink PJ (2006) Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using Species Sensitivity Distributions. Environ Toxicol Chem 25:2480–2489CrossRefGoogle Scholar
  23. Gescher A (1993) Metabolism of N,N-dimethylformamide: key to the understanding of its toxicity. Chem Res Toxicol 6:245–251CrossRefGoogle Scholar
  24. Gisi U, Schenker R, Schulin R, Stadelmann FX, Sticher H (1997) Bodenökologie. Thieme Verlag, StuttgartGoogle Scholar
  25. Gosset WS (1908) The probable error of a mean. Biometrika 6:1–25Google Scholar
  26. Herbst M, Van Esch GJ (1991) International programme on chemical safety, environmental health criteria. 124—Lindane. World Health Organization, GenevaGoogle Scholar
  27. Hommen U, Veith D, Dülmer U (1994) A computer program to evaluate plankton data of freshwater field tests. In: Hill IR, Heimbach F, Leeuwangh P, Matthiessen P (eds) Freshwater field tests for hazard assessment of chemicals. Lewis Publishers, Boca Raton, pp 503–513Google Scholar
  28. ISO (2003a) Soil quality—sampling of soil invertebrates—Part 1: handsorting and formaline extraction of earthworms. ISO/DIS 23611-1Google Scholar
  29. ISO (2003b) Soil quality—sampling of soil invertebrates—Part 2: sampling and extraction of microarthropods (Collembola and Acarina). ISO/DIS 23611-2Google Scholar
  30. Jones TM, Lewis HT Jr, Getsinger JG (1966) Formamide as a component of liquid fertilizers. J Agric Food Chem 14:20–23CrossRefGoogle Scholar
  31. Kampichler C (2001) Use of enclosed model ecosystems in soil ecology: a bias towards laboratory research. Soil Biol Biochem 3:269–275CrossRefGoogle Scholar
  32. Knacker T, Van Gestel CAM, Jones SE, Soares AMVM, Schallnaß HJ, Förster B, Edwards CA (2004) Ring-testing and field-validation of a terrestrial model ecosystem (TME)—an instrument for testing potentially harmful substances: conceptual approach and study design. Ecotoxicology 13:9–27CrossRefGoogle Scholar
  33. Koolhaas JEE, Van Gestel CAM, Römbke J, Soares AMVM, Jones SE (2004) Ring-testing and field-validation of a terrestrial model ecosystem (TME)—an instrument for testing potentially harmful substances: effects of carbendazim on soil microarthropod communities. Ecotoxicology 13:75–88CrossRefGoogle Scholar
  34. Kratz W (1998) The Bait-Lamina Test—general aspects, applications and perspectives. Environ Sci Pollut Res 5:94–96CrossRefGoogle Scholar
  35. Krieg W, Becker R, Schick H (2007) In-door terrestrial model ecosystem—experiences with TME filled with mixed field soil. SETAC Europe 17th annual meeting, Abstract Book. pp 258–259Google Scholar
  36. Kryazhimskii FV, Bolshakov VN (2008) Functional-ecological role of biological diversity in populations and communities. Russ J Ecol 39:383–389CrossRefGoogle Scholar
  37. Landesanstalt für Umweltschutz Baden-Württemberg (LUBW) (1993) Stoffbericht Hexachlorcyclohexan (HCH). Texte und Berichte zur Altlastenbearbeitung 18/95Google Scholar
  38. Larink O, Kratz W (1994) Köderstreifen-Workshop in Braunschweig—ein Resümee. Braunschweiger Naturkundliche Schriften 4:647–651Google Scholar
  39. Lebrun P, Van Straalen NM (1995) Oribatid mites: prospects for their use in ecotoxicology. Exp Appl Acarol 19:361–379CrossRefGoogle Scholar
  40. Lichtenstein EP, Millington WF, Cowley GT (1962) Effect of various insecticides on growth and respiration of plants. Agric Food Chem 10:251–256CrossRefGoogle Scholar
  41. Lock K, De Schamphelaere KAC, Janssen CR (2002) The effect of lindane on terrestrial invertebrates. Arch Environ Contam Toxicol 42:217–221CrossRefGoogle Scholar
  42. MacFadyen A (1961) Improved funnel type extractors for soil arthropods. J Anim Ecol 30:171–184CrossRefGoogle Scholar
  43. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is larger than the other. Ann Math Stat 18:50–60CrossRefGoogle Scholar
  44. Montforts MHMM (2006) Assessment of persistency and bioaccumulation in pesticide registration frameworks within the Organization for Economic Cooperation and Development. Integr Environ Assess Manag 2:13–21CrossRefGoogle Scholar
  45. Morgan E, Knacker T (1994) The role of laboratory terrestrial model ecosystems in the testing of potentially harmful substances. Ecotoxicology 3:213–233CrossRefGoogle Scholar
  46. Neher DA (1999) Soil community composition and ecosystem processes—comparing agricultural ecosystems with natural ecosystems. Agrofor Syst 45:159–185CrossRefGoogle Scholar
  47. OECD (2006) Guidance document on simulated freshwater lentic field tests (outdoor microcosms and mesocosms). OECD series on testing and assessment 53. OECD, ParisGoogle Scholar
  48. Potapov M (2001) Synopses on Palearctic Collembola, volume 3: Isotomidae. Abhandlungen und Berichte des Naturkundemuseum Görlitz 73:1–603Google Scholar
  49. Römbke J, Höfer H, Garcia MVB, Martius C (2006) Feeding activities of soil organisms at four different forest sites in Central Amazonia using the bait lamina method. J Trop Ecol 22:313–320CrossRefGoogle Scholar
  50. Roß-Nickoll M, Lennartz G, Fürste A, Mause R, Ottermanns R, Schäfer S, Smolis M, Theissen B, Toschki A, Ratte HT (2004) Die Arthropodenfauna von Nichtzielflächen und die Konsequenzen für die Bewertung der Auswirkungen von Pflanzenschutzmitteln auf den terrestrischen Bereich des Naturhaushaltes Umweltbundesamt, Berlin, pp 1–148Google Scholar
  51. Rothmaler W (2002a) Exkursionsflora von Deutschland. Gefäßpflanzen—Atlasband. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  52. Rothmaler W (2002b) Exkursionsflora von Deutschland. Gefäßpflanzen—rundband. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  53. Rusek J (1998) Biodiversity of Collembola and their functional role in the ecosystem. Biodivers Conserv 7:1207–1219CrossRefGoogle Scholar
  54. Schäffer A, Van den Brink PJ, Heimbach F, Hoy S, De Jong F, Römbke J, Sousa JP, Ross-Nickoll M (2008) Semi-field methods are a useful tool for the environmental risk assessment of pesticides in soil. Environ Sci Pollut Res 50:176–177CrossRefGoogle Scholar
  55. Schäffer A, van den Brink PJ, Heimbach F, Hoy SP, de Jong FMW, Römbke J, Roß-Nickoll M, Sousa JP (2010) Guidance from the SETAC Europe workshop: “semi-field methods for the environmental risk assessment of pesticides in soil (PERAS)”, Coimbra, Portugal, 8–10 Oct 2007. Society of Environmental Toxicology and Chemistry, Brussels, pp 1–107Google Scholar
  56. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefGoogle Scholar
  57. Scheu S (2002) The soil food web: structure and perspectives. Eur J Soil Biol 38:11–20CrossRefGoogle Scholar
  58. Schneider K, Scheu S, Maraun M (2007) Microarthropod density and diversity respond little to spatial isolation. Basic Appl Ecol 8:26–35CrossRefGoogle Scholar
  59. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656Google Scholar
  60. Siepel H (1996) Biodiversity of soil microarthropods: the filtering of species. Biodivers Conserv 5:251–260CrossRefGoogle Scholar
  61. Smith EP (1986) Randomized similarity analysis of multispecies laboratory and field studies. In: El Shaarawi AH, Kwiatkowski RE (eds) Statistical aspects of water quality monitoring, developments in water science, vol 27. Elsevier Science Publishers B.V., Amsterdam, pp 261–269Google Scholar
  62. SPSS Inc. (2005) SPSS 14.0 for Windows SPSS. Science Marketing Dept., ChicagoGoogle Scholar
  63. Stach J (1960) The Apterygotan fauna of Poland in relation to the world fauna of this group of insects. Tribe: Orchesellini. Polska Akademia Nauk, KrakauGoogle Scholar
  64. Stach J (1963) The Apterygotan fauna of Poland in relation to the world fauna of this group of insects. Tribe: Entomobryini. Polska Akademia Nauk, KrakauGoogle Scholar
  65. Strenzke K (1952) Untersuchungen über die Tiergemeinschaften des Bodens: Die Oribatiden und ihre Synusien in den Böden Norddeutschlands. Zool Stuttg 104:1–173Google Scholar
  66. Tanaka M (1970) The bio-economics on the populations of Isotoma (Desoria) trispinata MAC GILLIVRAY (Collembola; Isotomidae) and Onychiurus (Protaphorura) sp. (Collembola; Onychiuridae) in a grassfield. Publ Amakusa Mar Biol Lab 2:51–120Google Scholar
  67. Ter Braak CJF, Smilauer P (1998) Canoco Reference Manual and User’s Guide to Canoco for Windows. Software for canonical community ordination (version 4). Micro Computer Power, IthacaGoogle Scholar
  68. Thibaud JM, Schulz HJ, Da Gama Assalino MM (2004) Synopses on Palearctic Collembola, volume 4: Hypogastruridae. Abhandlungen und Berichte des Naturkundemuseum Görlitz 75(2):1–287Google Scholar
  69. Toschki A (2008) Eignung unterschiedlicher Monitoring-Methoden als Grundlage zum risk-assessment für Agrarsysteme—Am Beispiel einer biozönologischen Reihenuntersuchung und einer Einzelfallstudie. Dissertation am Institut für Umweltforschung der RWTH-AachenGoogle Scholar
  70. Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120CrossRefGoogle Scholar
  71. Ulman E (1972) Lindane, monograph of an insecticide. Verlag K. Schillinger, Freiberg im BreisgauGoogle Scholar
  72. Van den Brink PJ, Ter Braak CJF (1997) Ordination of responses to toxic stress in experimental ecosystems. Toxicol Ecotoxicol News Rev 4:173–177Google Scholar
  73. Van den Brink PJ, Ter Braak CJF (1998) Multivariate analysis of stress in experimental ecosystems by Principal Response Curves and similarity analysis. Aquat Ecol 32:163–178CrossRefGoogle Scholar
  74. Van den Brink PJ, Ter Braak CJF (1999) Principal response curves: analysis of time-dependent multivariate responses of biological community to stress. Environ Toxicol Chem 18:138–148CrossRefGoogle Scholar
  75. Veeranagouda Y, Emmanuel Paul PV, Gorla P, Siddavattam D, Karegoudar TB (2006) Complete mineralisation of dimethylformamide by Ochrobactrum sp. DGVK1 isolated from the soil samples collected from the coalmine leftovers. Appl Microbiol Biotechnol 71:369–375CrossRefGoogle Scholar
  76. Von Törne E (1990) Assessing feeding activities of soil-living animals. I. Bait-Lamina tests. Pedobiologia 34:89–101Google Scholar
  77. Weigmann G (2006) Hornmilben (Oribatida) In: Dahl, Tierwelt Deutschlands 76. Goecke and Evers, KelternGoogle Scholar
  78. Weigmann G, Kratz W (1981) Die deutschen Hornmilbenarten und ihre ökologische Charakteristik. Zool Beiträge 27:459–489Google Scholar
  79. Weyers A, Sokull-Klüttgen B, Knacker T, Martin S, Van Gestel CAM (2004) Use of terrestrial model ecosystem data in environmental risk assessment for industrial chemicals, biocides and plant protection products in the EU. Ecotoxicology 13:163–176CrossRefGoogle Scholar
  80. Wiles JA, Frampton GK (1996) A field bioassay approach to assess the toxicity of insecticide residues on soil to Collembola. Pest Sci 47:273–285CrossRefGoogle Scholar
  81. Williams DA (1971) A test for differences between treatment means when several dose levels are compared with a zero dose control. Biometrics 27:103–117CrossRefGoogle Scholar
  82. Williams DA (1972) The comparison of several dose levels with a zero dose control. Biometrics 28:519–531CrossRefGoogle Scholar
  83. Willmann C (1931) Moosmilben oder Oribatiden (Cryptostigmata). In: Dahl F (ed) Die Tierwelt Deutschlands, Bd. 22, vol 5. Gustav Fischer, Jena, pp 79–200Google Scholar
  84. Zimdars B, Dunger W (1994) Synopses on Palearctic Collembola, volume 1: Tullbergiinae. Abhandlungen und Berichte des Naturkundemuseum Görlitz 68:1–71Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • B. Scholz-Starke
    • 1
    Email author
  • A. Nikolakis
    • 2
  • T. Leicher
    • 2
  • C. Lechelt-Kunze
    • 2
  • F. Heimbach
    • 3
  • B. Theißen
    • 1
  • A. Toschki
    • 4
  • H. T. Ratte
    • 1
  • A. Schäffer
    • 1
  • M. Roß-Nickoll
    • 1
  1. 1.Institute for Environmental Research (BioV)RWTH Aachen UniversityAachenGermany
  2. 2.Bayer CropScience AGMonheim am RheinGermany
  3. 3.RIFCON GmbHLeichlingenGermany
  4. 4.Forschungsinstitut für Ökosystemanalyse und -bewertung e.V. (gaiac)AachenGermany

Personalised recommendations