, Volume 20, Issue 8, pp 1890–1899 | Cite as

Genotoxicity in Atlantic killifish (Fundulus heteroclitus) from a PAH-contaminated Superfund site on the Elizabeth River, Virginia

  • Dawoon Jung
  • Cole W. Matson
  • Leonard B. Collins
  • Geoff Laban
  • Heather M. Stapleton
  • John W. Bickham
  • James A. Swenberg
  • Richard T. Di GiulioEmail author


The Atlantic Wood Industries Superfund site (AWI) on the Elizabeth River in Portsmouth, VA is heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) from a wood treatment facility. Atlantic killifish, or mummichog (Fundulus heteroclitus), at this Superfund site are exposed to very high concentrations of several carcinogens. In this study, we measured PAH concentrations in both fish tissues and sediments. Concurrently, we assessed different aspects of genotoxicity in the killifish exposed in situ. Both sediment and tissue PAH levels were significantly higher in AWI samples, relative to a reference site, but the chemistry profile was different between sediments and tissues. Killifish at AWI exhibited higher levels of DNA damage compared to reference fish, as measured via the flow cytometric method (FCM), and the damage was consistent with sediment PAH concentrations. Covalent binding of benzo[a]pyrene (BaP) metabolites to DNA, as measured via LC–MS/MS adduct detection methods, were also elevated and could be partially responsible for the DNA damage. Using similar LC–MS/MS methods, we found no evidence that oxidative DNA adducts had a role in observed genotoxicity.


Fundulus heteroclitus DNA adduct Chromosomal damage Elizabeth River Atlantic Wood Industries Superfund site Polycyclic aromatic hydrocarbon Biomarker 



We thank Drs. Lauren Wills and Bryan Clark, and Lindsey Van Tiem for assistance in sample collection and processing, and Shannon Kelly, Sara Eagle, Dr. Ben Colman for technical support for sediment and tissue analysis. Standards for BPDE adduct analysis were provided by Dr. Natalia Tretyakova of University of Minnesota. This research was funded by Duke Superfund Research Program (P42 ES10356), Duke Integrated Toxicology and Environmental Health Program (NIEHS, T32ES07031), and UNC Superfund Research Program (P42 ES05948).

Supplementary material

10646_2011_727_MOESM1_ESM.pdf (44 kb)
Supplementary material 1 (PDF 44 kb)


  1. Bacanskas LR, Whitaker J, Di Giulio RT (2004) Oxidative stress in two populations of killifish (Fundulus heteroclitus) with differing contaminant exposure histories. Mar Environ Res 58:597–601CrossRefGoogle Scholar
  2. Bickham JW (1990) Flow cytometry as a technique to monitor the effects of environmental genotoxins on wildlife populations. In: Sandhu SS, Lower WR, de Serres FJ, Suk WA, Tice RR (eds) In situ evaluations of biological hazards of environmental pollutants. Plenum, New York, pp 81–93Google Scholar
  3. Billiard SM, Timme-Laragy AR, Wassenberg DM, Cockman C, Di Giulio RT (2006) The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol Sci 92:526–536CrossRefGoogle Scholar
  4. Billiard SM, Meyer JN, Wassenberg DM, Hodson PV, Di Giulio RT (2008) Nonadditive effects of PAHs on early vertebrate development: mechanisms and implications for risk assessment. Toxicol Sci 105:5–23CrossRefGoogle Scholar
  5. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13:135–160CrossRefGoogle Scholar
  6. Carlson EA, Li Y, Zelikoff JT (2004) Benzo[a]pyrene-induced immunotoxicity in Japanese medaka (Oryzias latipes): relationship between lymphoid CYP1A activity and humoral immune suppression. Toxicol Appl Pharmacol 201:40–52CrossRefGoogle Scholar
  7. Chaloupka K, Santostefano M, Goldfarb IS, Liu G, Myers MJ, Tsyrolv IB, Gelboin HV, Krishnan V, Safe S (1994) Aryl hydrocarbon (Ah) receptor-independent induction of Cyp1a2 gene expression by acenaphthylene and related compounds in B6C3F1 mice. Carcinogenesis 15:2835–2840CrossRefGoogle Scholar
  8. Chang KF, Fang GC, Chen JC, Wu YS (2006) Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: a review from 1999 to 2004. Environ Pollut 142:388–396CrossRefGoogle Scholar
  9. Custer CM, Custer TW, Rosiu CJ, Melancon MJ, Bickham JW, Matson CW (2005) Exposure and effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in tree swallows (Tachycineta bicolor) nesting along the Woonasquatucket River, Rhode Island, USA. Environ Toxicol Chem 24:93–109CrossRefGoogle Scholar
  10. Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sed Petrol 44:242–248Google Scholar
  11. French BL, Reichert WL, Hom T, Nishimoto M, Sanborn HR, Stein JE (1996) Accumulation and dose-response of hepatic DNA adducts in English sole (Pleuronectes vetulus) exposed to a gradient of contaminated sediments. Aquat Toxicol 36:1–16CrossRefGoogle Scholar
  12. Goanvec C, Theron M, Lacoue-Labarthe T, Poirier E, Guyomarch J, Le-Floch S, Laroche J, Nonnotte L, Nonnotte G (2008) Flow cytometry for the evaluation of chromosomal damage in turbot Psetta maxima (L.) exposed to the dissolved fraction of heavy fuel oil in sea water: a comparison with classical biomarkers. J Fish Biol 73:395–413CrossRefGoogle Scholar
  13. Groff AA, da Silva J, Nunes EA, Ianistcki M, Guecheva TN, de Oliveira AM, de Oliveira CPF, Val AL, Henriques JAP (2010) UVA/UVB-induced genotoxicity and lesion repair in Colossoma macropomum and Arapaima gigas Amazonian fish. J Photochem Photobiol B-Biol 99:93–99CrossRefGoogle Scholar
  14. Hartwell SI, Hameedi J (2007) Magnitude and extent of contaminated sediment and toxicity in Chesapeake Bay. NOAA Technical Memorandum NOS NCCOS 47, pp i–xix, 1–215Google Scholar
  15. Hermann M (1981) Synergistic effects of individual polycyclic aromatic hydrocarbons on the mutagenicity of their mixtures. Mutat Res 90:399–409CrossRefGoogle Scholar
  16. Hunter SE, Jung D, Di Giulio RT, Meyer JN (2010) The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods 51:444–451CrossRefGoogle Scholar
  17. Jeong YC, Walker NJ, Burgin DE, Kissling G, Gupta M, Kupper L, Birnbaum LS, Swenberg JA (2008) Accumulation of M1dG DNA adducts after chronic exposure to PCBs, but not from acute exposure to polychlorinated aromatic hydrocarbons. Free Radic Biol Med 45:585–591CrossRefGoogle Scholar
  18. Jung D, Cho Y, Collins LB, Swenberg JA, Di Giulio RT (2009a) Effects of benzo[a]pyrene on mitochondrial and nuclear DNA damage in Atlantic killifish (Fundulus heteroclitus) from a creosote-contaminated and reference site. Aquat Toxicol 95:44–51CrossRefGoogle Scholar
  19. Jung D, Cho Y, Meyer JN, Di Giulio RT (2009b) The long amplicon quantitative PCR for DNA damage assay as a sensitive method of assessing DNA damage in the environmental model, Atlantic killifish (Fundulus heteroclitus). Comp Biochem Physiol C Toxicol Pharmacol 149:182–186CrossRefGoogle Scholar
  20. Lin TC, Chang FH, Hsieh JH, Chao HR, Chao MR (2002) Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple. J Hazard Mater 95:1–12CrossRefGoogle Scholar
  21. Lyons BP, Stewart C, Kirby MF (2000) P-32-postlabelling analysis of DNA adducts and EROD induction as biomarkers of genotoxin exposure in dab (Limanda limanda) from British coastal waters. Mar Environ Res 50:575–579CrossRefGoogle Scholar
  22. Machella N, Regoli F, Santella RM (2005) Immunofluorescent detection of 8-oxo-dG and PAH bulky adducts in fish liver and mussel digestive gland. Aquat Toxicol 71:335–343CrossRefGoogle Scholar
  23. Malins DC, Ostrander GK, Haimanot R, Williams P (1990) A novel DNA lesion in neoplastic livers of feral fish: 2,6-diamino-4-hydroxy-5-formamidopyrimidine. Carcinogenesis 11:1045–1047CrossRefGoogle Scholar
  24. Matson CW, Palatnikov G, Islamzadeh A, McDonald TJ, Autenrieth RL, Donnelly KC, Bickham JW (2005) Chromosomal damage in two species of aquatic turtles (Emys orbicularis and Mauremys caspica) inhabiting contaminated sites in Azerbaijan. Ecotoxicology 14:513–525CrossRefGoogle Scholar
  25. Matson CW, Gillespie AM, McCarthy C, McDonald TJ, Bickham JW, Sullivan R, Donnelly KC (2009) Wildlife toxicology: biomarkers of genotoxic exposures at a hazardous waste site. Ecotoxicology 18:886–898CrossRefGoogle Scholar
  26. Meador JP, Stein JE, Reichert WL, Varanasi U (1995) Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol 143:79–165CrossRefGoogle Scholar
  27. Meyer JN (2010) QPCR: a tool for analysis of mitochondrial and nuclear DNA damage in ecotoxicology. Ecotoxicology 19:804–811CrossRefGoogle Scholar
  28. Meyer JN, Smith JD, Winston GW, Di Giulio RT (2003) Antioxidant defenses in killifish (Fundulus heteroclitus) exposed to contaminated sediments and model prooxidants: short-term and heritable responses. Aquat Toxicol 65:377–395CrossRefGoogle Scholar
  29. Mitchell DL, Nairn RS, Johnston DA, Byrom M, Kazianis S, Walter RB (2004) Decreased levels of (6–4) photoproduct excision repair in hybrid fish of the genus Xiphophorus. Photochem Photobiol 79:447–452CrossRefGoogle Scholar
  30. Nye LG, Witt LA (1995) Interpreting moderator effects—substitute for the signed coefficient rule. Educ Psychol Meas 55:27–31CrossRefGoogle Scholar
  31. Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924CrossRefGoogle Scholar
  32. Park JH, Troxel AB, Harvey RG, Penning TM (2006) Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by the aldo-keto-reductases (AKRs) generate abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. Chem Res Toxicol 19:719–728CrossRefGoogle Scholar
  33. Perera FP, Li Z, Whyatt R, Hoepner L, Wang S, Camann D, Rauh V (2009) Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 124:e195–e202CrossRefGoogle Scholar
  34. Petry T, Schmid P, Schlatter C (1996) The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere 32:639–648CrossRefGoogle Scholar
  35. Reynaud S, Deschaux P (2006) The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review. Aquat Toxicol 77:229–238CrossRefGoogle Scholar
  36. Rose WL, French BL, Reichert WL, Faisal M (2000) DNA adducts in hematopoietic tissues and blood of the mummichog (Fundulus heteroclitus) from a creosote-contaminated site in the Elizabeth River, Virginia. Mar Environ Res 50:581–589CrossRefGoogle Scholar
  37. Ryu DY, Levi PE, Fernandez-Salguero P, Gonzalez FJ, Hodgson E (1996) Piperonyl butoxide and acenaphthylene induce cytochrome P450 1A2 and 1B1 mRNA in aromatic hydrocarbon-responsive receptor knock-out mouse liver. Mol Pharmacol 50:443–446Google Scholar
  38. Sanyal MK, Li YL (2007) Deleterious effects of polynuclear aromatic hydrocarbon on blood vascular system of the rat fetus. Birth Defects Res B Dev Reprod Toxicol 80:367–373CrossRefGoogle Scholar
  39. Schneider AR, Stapleton HM, Cornwell J, Baker JE (2001) Recent declines in PAH, PCB, and toxaphene levels in the northern Great Lakes as determined from high resolution sediment cores. Environ Sci Technol 35:3809–3815CrossRefGoogle Scholar
  40. Schneider K, Roller M, Kalberlah F, Schuhmacher-Wolz U (2002) Cancer risk assessment for oral exposure to PAH mixtures. J Appl Toxicol 22:73–83CrossRefGoogle Scholar
  41. Schnell JV, Gruger EH, Malins DC (1980) Mono-oxygenase activities of Coho salmon (Oncorhynchus kisutch) liver-microsome using 3 polycyclic aromatic hydrocarbon substrates. Xenobiotica 10:229–234CrossRefGoogle Scholar
  42. Siu WHL, Cao J, Jack RW, Wu RSS, Richardson BJ, Xu L, Lam PKS (2004) Application of the comet and micronucleus assays to the detection of B[a]P genotoxicity in haemocytes of the green-lipped mussel (Perna viridis). Aquat Toxicol 66:381–392CrossRefGoogle Scholar
  43. Soclo HH, Budzinski H, Garrigues P, Matsuzawa S (2008) Biota accumulation of polycyclic aromatic hydrocarbons in benin coastal waters. Polycycl Aromat Compd 28:112–127CrossRefGoogle Scholar
  44. Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195CrossRefGoogle Scholar
  45. Stapleton HM, Allen JG, Kelly SM, Konstantinov A, Klosterhaus S, Watkins D, McClean MD, Webster TF (2008) Alternate and new brominated flame retardants detected in U.S. house dust. Environ Sci Technol 42:6910–6916CrossRefGoogle Scholar
  46. Theodorakis CW (2001) Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment. Ecotoxicology 10:245–256CrossRefGoogle Scholar
  47. USEPA (2007) Record of decision—Atlantic Wood Industries, Inc. Superfund site. United States Environmental Protection Agency, WashingtonGoogle Scholar
  48. USEPA (2010) Development of a relative potency factor (RPF) approach for polycyclic aromatic hydrocarbon (PAH) mixtures (External Review Draft), EPA/635/R-08/012A. United States Environmental Protection Agency, WashingtonGoogle Scholar
  49. van der Oost R, van Gastel L, Worst D, Hanraads M, Satumalay K, van Schooten F-J, Heida H, Vermeulen NPE (1994a) Biochemical markers in feral roach (Rutilus rutilus) in relation to the bioaccumulation of organic trace pollutants. Chemosphere 29:801–817CrossRefGoogle Scholar
  50. van der Oost R, van Schooten F-J, Ariese F, Heida H, Satumalay K, Vermeulen NPE (1994b) Bioaccumulation, biotransformation and DNA binding of PAHs in feral eel (Anguilla anguilla) exposed to polluted sediments: a field study. Environ Toxicol Chem 13:859–870Google Scholar
  51. Van Metre PC, Mahler BJ (2005) Trends in hydrophobic organic contaminants in urban and reference lake sediments across the United States, 1970–2001. Environ Sci Technol 39:5567–5574CrossRefGoogle Scholar
  52. Van Veld PA, Nacci DE (2008) Toxicity resistance. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. CRC Press, Boca Raton, pp 597–644CrossRefGoogle Scholar
  53. Varanasi U, Stein JE (1991) Disposition of xenobiotic chemicals and metabolites in marine organisms. Environ Health Perspect 90:93–100CrossRefGoogle Scholar
  54. Varanasi U, Reichert WL, Le Eberhart BT, Stein JE (1989) Formation and persistence of benzo[ia]pyrene-diolepoxide-DNA adducts in liver of English sole (Parophrys vetulus). Chem Biol Interact 69:203–216CrossRefGoogle Scholar
  55. Viguri J, Verde J, Irabien A (2002) Environmental assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Santander Bay, Northern Spain. Chemosphere 48:157–165CrossRefGoogle Scholar
  56. Vindelov LL, Christiansen IJ (1994) Detergent and proteolytic enzyme-based techniques for nuclear isolation and DNA content analysis. In: Darzynkiewicz Z, Robinson JP, Crissman HA (eds) Flow cytometry: methods in cell biology, Part A, 2nd edn. Academic, New York, pp 219–229Google Scholar
  57. Vogelbein WK, Fournie JW, Van Veld PA, Huggett RJ (1990) Hepatic neoplasms in the mummichog Fundulus heteroclitus from a creosote-contaminated site. Cancer Res 50:5978–5986Google Scholar
  58. Vogelbein WK, Unger M, Gauthier D (2008) The Elizabeth River Monitoring Program 2006–2007: association between mummichog liver histopathology and sediment chemical contamination. The Virginia Department of Environmental Quality, RichmondGoogle Scholar
  59. Walker SE, Dickhut RM, Chisholm-Brause C (2004) Polycyclic aromatic hydrocarbons in a highly industrialized urban estuary: inventories and trends. Environ Toxicol Chem 23:2655–2664CrossRefGoogle Scholar
  60. Walker SE, Dickhut RM, Chisholm-Brause C, Sylva S, Reddy CM (2005) Molecular and isotopic identification of PAH sources in a highly industrialized urban estuary. Org Geochem 36:619–632CrossRefGoogle Scholar
  61. Wassenberg DM, Di Giulio RT (2004a) Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus. Environ Health Perspect 112:1658–1664CrossRefGoogle Scholar
  62. Wassenberg DM, Di Giulio RT (2004b) Teratogenesis in Fundulus heteroclitus embryos exposed to a creosote-contaminated sediment extract and CYP1A inhibitors. Mar Environ Res 58:163–168CrossRefGoogle Scholar
  63. Wills LP, Zhu S, Willett KL, Di Giulio RT (2009) Effect of CYP1A inhibition on the biotransformation of benzo[a]pyrene in two populations of Fundulus heteroclitus with different exposure histories. Aquat Toxicol 92:195–201CrossRefGoogle Scholar
  64. Wills LP, Matson CW, Landon CD, Di Giulio RT (2010) Characterization of the recalcitrant CYP1 phenotype found in Atlantic killifish (Fundulus heteroclitus) inhabiting a Superfund site on the Elizabeth River, VA. Aquat Toxicol 99:33–41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dawoon Jung
    • 1
    • 2
  • Cole W. Matson
    • 1
    • 3
  • Leonard B. Collins
    • 4
  • Geoff Laban
    • 5
  • Heather M. Stapleton
    • 1
  • John W. Bickham
    • 5
  • James A. Swenberg
    • 4
  • Richard T. Di Giulio
    • 1
    Email author
  1. 1.Nicholas School of the EnvironmentDuke UniversityDurhamUSA
  2. 2.Department of Microbiology and ImmunologyDartmouth Medical SchoolHanoverUSA
  3. 3.Center for the Environmental Implications of NanoTechnology (CEINT)Duke UniversityDurhamUSA
  4. 4.Center for Environmental Health and SusceptibilityGillings School of Global Public Health, University of North CarolinaChapel HillUSA
  5. 5.Center for the EnvironmentPurdue UniversityW. LafayetteUSA

Personalised recommendations