, Volume 20, Issue 8, pp 1773–1779 | Cite as

Mercury levels of Nelson’s and saltmarsh sparrows at wintering grounds in Virginia, USA

  • Daniel A. Cristol
  • Fletcher M. Smith
  • Claire W. Varian-Ramos
  • Bryan D. Watts


Nelson’s and saltmarsh sparrows (Ammodramus nelsoni and A. caudacutus) have recently been recognized as separate species, and because of their limited distributions and the susceptibility of their wetland habitats to climate change, these two new species are of conservation concern. Both species are known to bioaccumulate mercury at breeding sites in New England, USA where their ranges overlap, with the saltmarsh sparrow reported to have twice the concentration of blood total mercury. In this study we sampled both species on their shared wintering grounds, and documented that mercury exposure is lower than that reported for the breeding range, with saltmarsh sparrow blood mercury 2.6 times higher than in Nelson’s sparrow. Feather mercury, which is incorporated on the breeding grounds, confirmed that saltmarsh sparrows had incorporated 2.3 times more mercury than Nelson’s sparrows during the previous breeding season. A comparison of stable isotopes of nitrogen and carbon suggests that the higher exposure of saltmarsh sparrows may be not due to feeding at a higher trophic level, as previously hypothesized, but rather could be related to a difference in the carbon source at the base of each species’ food chain. This study, along with recently published data from both species on additional breeding and wintering grounds, provides a more complete picture of relative mercury exposure. Saltmarsh sparrows are exposed to mercury levels that warrant concern, with the highest exposure being during the breeding season. Areas set aside for the long-term conservation of this species should be carefully assessed for mercury bioaccumulation.


Chesapeake Bay Mercury Nelson’s sparrow Saltmarsh sparrow Stable isotopes Wintering ground 



We are indebted to James Junda, Sarah Bastarache, Mikaela Howie, Andrew Mcgann, Leah Gibala Smith, Kjarstin Carlson-Drexler, and the Eastern Shore Master Naturalists club for providing field and laboratory support. Susan Lingenfelser, Susan Rice, Joelle Buffa, Pam Denmon, John Gallegos, and Cyrus Brame provided logistical support. Financial support was provided by the William and Mary Undergraduate Science Education and Research Program sponsored by the Howard Hughes Medical Institute, USFWS Environmental Contaminants Division—Virginia Field Office, Gloucester, Virginia, and The Center for Conservation Biology at The College of William & Mary/Virginia Commonwealth University.


  1. American Ornithologists’ Union (1995) Fortieth supplement to the American Ornithologists’ Union check-list of North American birds. Auk 112:819–830Google Scholar
  2. Brasso RL, Cristol DA (2008) Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology 17:133–141CrossRefGoogle Scholar
  3. Condon AM, Cristol DA (2009) Feather growth influences blood mercury level of young songbirds. Environ Toxicol Chem 28:395–401CrossRefGoogle Scholar
  4. Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335CrossRefGoogle Scholar
  5. Custer CM, Custer TW, Hill EF (2007) Mercury exposure and effects on cavity-nesting birds from the Carson River, Nevada. Arch Environ Contam Toxicol 52:129–136CrossRefGoogle Scholar
  6. Dettmers R, Rosenberg KV (2000) Partners in Flight Landbird conservation plan, physiographic area 9: Southern New England. American Bird Conservancy, ArlingtonGoogle Scholar
  7. US Fish and Wildlife Service (2002) Birds of conservation concern 2002. Division of Migratory Bird Management, ArlingtonGoogle Scholar
  8. Greenlaw JS, Rising RD (1994) Sharp-tailed Sparrow (Ammodramus caudacutus). In: Poole A and Gill F (eds) The Birds of North America, No. 112. The Academy of Natural Sciences, Philadelphia and the American Ornighologists’ Union, Washington, DC.Google Scholar
  9. Greenlaw JS, Woolfendon GE (2007) Wintering distributions and migration of saltmarsh and Nelson’s sharp-tailed sparrows. Wils J Ornithol 119:361–377. doi: 10.1676/05-152.1 CrossRefGoogle Scholar
  10. Hallinger KK, Cornell KL, Brasso RL, Cristol DA (2011) Mercury exposure and survival in free-living tree swallows (Tachycineta bicolor). Ecotoxicology 20:39–46CrossRefGoogle Scholar
  11. Henny CJ, Hill EF, Hoffman DJ, Spalding MG, Grove RA (2002) Nineteenth century mercury: hazard to wading birds and cormorants of the Carson River, Nevada. Ecotoxicology 11:213–231CrossRefGoogle Scholar
  12. IUCN (2010) IUCN Red list of threatened species. Version 2010.4. Accessed on 20 Dec 2010
  13. Kelly J (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27CrossRefGoogle Scholar
  14. Rich TD, Beardmore CJ, Berlanga H, Blancher PJ, Bradstreet MSW, Butcher GS, Demarest DW, Dunn EH, Hunter WC, Iñigo-Elias EC, Kennedy JA, Martell AM, Panjabi AO, Pashley DN, Rosenberg KV, Rustay CM, Wendt JS, Will TC (2004) Partners in Flight North American landbird conservation plan. Cornell Laboratory of Ornithology, IthacaGoogle Scholar
  15. Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methyl mercury on the health of wild birds, mammals, and fish. AMBIO 36:12–18CrossRefGoogle Scholar
  16. Shriver WG, Evers DC, Hodgman TP, MacCulloch BJ, Taylor RJ (2006) Mercury in sharp-tailed sparrows breeding in coastal wetlands. Environ Bioindic 1:1–7CrossRefGoogle Scholar
  17. Shriver WG, Hodgeman TP, Gibbs JP, Vickery PD (2010) Home range sizes and habitat use of Nelson’s and saltmarsh sparrows. Wilson J Ornith 122:340–345CrossRefGoogle Scholar
  18. Warner SE (2009) Effects of direct and indirect habitat alterations on tidal marsh sparrows in the Delaware Bay. MS thesis, University of DelawareGoogle Scholar
  19. Watts BD (2005) A recent breeding record of the saltmarsh sharp-tailed sparrow in Gloucester County Virginia. Raven 75:128–131Google Scholar
  20. Winder VL, Emslie SD (2011) Mercury in breeding and wintering Nelson’s sparrow (Ammodramus nelsoni). Ecotoxicology 20:218–225Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Daniel A. Cristol
    • 1
  • Fletcher M. Smith
    • 2
  • Claire W. Varian-Ramos
    • 1
  • Bryan D. Watts
    • 2
  1. 1.Department of Biology, College of William & MaryInstitute for Integrative Bird Behavior StudiesWilliamsburgUSA
  2. 2.Center for Conservation Biology, College of William & MaryWilliamsburgUSA

Personalised recommendations