Advertisement

Ecotoxicology

, 20:847 | Cite as

Effect of heavy metal exposure on blood haemoglobin concentration and methemoglobin percentage in Lumbricus terrestris

  • A. Calisi
  • M. G. LionettoEmail author
  • J. C. Sanchez-Hernandez
  • T. Schettino
Article

Abstract

The earthworm haemoglobin (Hb) is a large extracellular hemoprotein flowing in a closed circulatory system. In spite of the fundamental role of this respiratory pigment in earthworm physiology, little is known about its sensitivity to environmental pollutants. The aim of the present work was to investigate the possible effect of heavy metal (cadmium, copper, mercury) exposure on Hb concentration and oxidation state (methemoglobin formation) in the earthworm Lumbricus terrestris. In addition, the tissue concentration of metallothioneins, a well-known biomarker of heavy metal exposure, was determined as an indicator of metal uptake. The animals were exposed to increasing concentrations of Cd, Cu and Hg utilizing the standard acute toxicity test, “Filter paper test” for 48 h. Exposure to heavy metals (10−5–10−3 M for Cd, 10−4–10−3 M for Hg, and 10−4–10−2 M for Cu) was found to increase haemoglobin concentration in L. terrestris, although the magnitude of such an increase was dependent on the metal. In addition, metal exposure led to the formation of methemoglobin. Compared to other known biological responses to heavy metals, such as metallothionein induction, methemoglobin increase showed a higher sensitivity and a higher percentage variation in exposed organisms, showing to be a possible suitable biomarker of exposure/effect to be included in a multi biomarker strategy in earthworm in soil monitoring assessment.

Keywords

Earthworms Haemoglobin Heavy metal Lumbricus terrestris Methemoglobin 

References

  1. Affar EB, Dufour M, Poirier GG, Nadeau D (1998) Isolation, purification and partial characterization of chloragocytes from the earthworm species Lumbricus terrestris. Mol Cell Biochem 185:123–133CrossRefGoogle Scholar
  2. Bonafe CFS, Villas-Boas M, Suarez MC, Silva JL (1991) Reassembly of a large multisubunit protein promoted by nonprotein factors. Effects of calcium and glycerol on the association of extracellular hemoglobin. J Biol Chem 266:13210–13216Google Scholar
  3. Bowerman WW, Stickle JE, Sikarskie JG, Giesy JP (2000) Hematology and serum chemistries of nestling bald eagles (Haliaeetus leucocephalus) in the lower peninsula of MI, USA. Chemosphere 41:1575–1579CrossRefGoogle Scholar
  4. Capri E, Trevisan M (2002) I metalli pesanti di origine agricola nei suoli e nelle acque sotterranee. Pitagora Editrice, Bologna, pp 3–57Google Scholar
  5. Chiancone E, Ferruzzi G, Bonaventura C, Bonaventura J (1981) Amphitrite ornata erythrocruorin. II. Molecular controls of function. Biochim Biophys Acta 670:84–92Google Scholar
  6. Cortet J, Gomot-De Vauflery A, Poinsot-Balauger N, Gomot L, Texier C, Cluzeau D (1999) The use of invertebrate soil fauna in monitoring pollutant effects. Eur J Soil Biol 35:115–134CrossRefGoogle Scholar
  7. Dauwe T, Janssens E, Eens M (2006) Effects of heavy metal exposure on the condition and health of adult great tits (Parus major). Environ Pollut 140:71–78CrossRefGoogle Scholar
  8. Dawson MA (1982) Effects of long-term mercury exposure on hematology of striped bass, Morone saxatilis. Fish Bull (Washington, DC) 80:389–392Google Scholar
  9. Di Girolamo F, Campanella L, Samperi R, Bachi A (2009) Mass spectrometric identification of hemoglobin modifications induced by nitrosobenzene. Ecotoxicol Environ Saf 72:1601–1608CrossRefGoogle Scholar
  10. Diogène J, Dufour M, Poirier GG, Nadeau D (1997) Extrusion of earthworm coelomocytes: comparison of the cell populations recovered from the species Lumbricus terrestris, Eisenia fetida and Octolasion tyrtaeum. Lab Anim 31:326–336CrossRefGoogle Scholar
  11. Drabkin DL, Austin JH (1935) Spectrophotometric studies: ii. preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. J Biol Chem 112:51–65Google Scholar
  12. Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms. Chapman & Hall, London, pp 1–212Google Scholar
  13. Evelyn KA, Malloy HT (1938) Microdetermination of oxyhemoglobin, methemoglobin, and sulfhemoglobin in a single sample of blood. J Biol Chem 126:655–662Google Scholar
  14. French CL, Yaun SS, Baldwin LA, Leonard DA, Zhao XQ, Calabrese EJ (2006) Potency ranking of methemoglobin-forming agents. J Appl Toxicol 15:167–174CrossRefGoogle Scholar
  15. Gastaldi L, Hankard P, Peres G, Canesi L, Viarengo A, Pons G (2007) Application of a biomarker battery for the evaluation of the sublethal effects of pollutants in the earthworm Eisenia andrei. Comp Biochem Physiol C 146:398–405Google Scholar
  16. Ha M, Choi J (2008) Chemical-induced alteration of hemoglobin expression in the fourth instar larvae of Chironomus tentans Mg. (Diptera: Chironomidae). Environ Toxicol Pharmacol 25:393–398CrossRefGoogle Scholar
  17. Higueras P, Oyarzun R, Lillo J, Sanchez-Hernandez JC, Molina J, Esbri JM, Lorenzo S (2006) The Almaden district (Spain): anatomy of one of the world’s largest Hg-contaminated sites. Sci Total Environ 356:112–124CrossRefGoogle Scholar
  18. Honeycutt M, Roberts BL, Roane DS (1995) Cadmium disposition in the earthworm Eisenia foetida. Ecotoxicol Environ Saf 30:143–150CrossRefGoogle Scholar
  19. Iolascon A, De Falco L, Beaumont C (2009) Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis. Haematologica 94:395–408CrossRefGoogle Scholar
  20. Jongmans AG, Pulleman MM, Balabane M, Van Oort F, Marinissen JCY (2003) Soil structure and characteristics of organic matter in two orchards differing in earthworms activity. Appl Soil Ecol 24:219–232CrossRefGoogle Scholar
  21. Kao W, Qin J, Fushitani K, Smith SS, Gorr TA, Riggs CK, Knapp JE, Chait BT, Riggs AF (2006) Linker chains of the gigantic hemoglobin of the earthworm Lumbricus terrestris: primary structures of linkers L2, L3, and L4 and analysis of the connectivity of the disulfide bonds in linker L1. Protein Struct Funct Bioinformatics 63:174–187CrossRefGoogle Scholar
  22. Karuppasamy R, Subathra S, Puvaneswari S (2005) Haematological responses to exposure to sublethal concentration of cadmium in air breathing fish, Channa punctatus (Bloch). J Environ Biol 26:123–128Google Scholar
  23. Kuchumov AR, Taveau JC, Lamy JN, Wall JS, Weber RE, Vinogradov SN (1999) The role of linkers in the reassembly of the 3.6 MDa hexagonal bilayer hemoglobin from Lumbricus terrestris. J Mol Biol 289:1361–1374CrossRefGoogle Scholar
  24. Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57:39–47CrossRefGoogle Scholar
  25. Li W, Chien PK, Furst A (1994) Evaluation of three antidotes on arsenic toxicity in the common earthworm (Lumbricus terrestris). J Appl Toxicol 14:181–183CrossRefGoogle Scholar
  26. Martinez-Tabche L, Ramirez Mora B, Gomez Oliva L, Faz GC, Grajeda y Ortega M (1999) Toxic effect of nickel on hemoglobin concentration of Limnodrilus hoffmeisteri in spiked sediments of trout farms. Ecotoxicol Environ Saf 42:143–149CrossRefGoogle Scholar
  27. Martinez-Tabche L, De Los Angeles Grajeday Ortega M, Ramirez Mora B, Faz CG, Lopez Lopez E, Galar Martinez M (2001) Hemoglobin concentration and acetylcholinesterase activity of oligochaetes in relation to lead concentration in spiked sediments from Ignacio Ramirez reservoir. Ecotoxicol Environ Saf 49:76–83CrossRefGoogle Scholar
  28. Mazón A, Cerqueira C, Fernández M (2002) Gill cellular changes induced by copper exposure in the South American tropical freshwater fish Prochilodus scrofa. Environ Res 88:52–63CrossRefGoogle Scholar
  29. Migula P, Baczkowski G, Wielgus-Serafiñska E (1977) Respiratory metabolism and haemoglobin concentration in an earthworm —Eisenia foetida (Savigny 1826) under exposure of lead in toxification. Acta Biol Katowice 4:79–94Google Scholar
  30. Nathalí G, Salazar R (2004). Hematological response of freshwater fish Colossoma macropomum exposed to sublethal copper concentration. In: Symposium proceedings from the International Congress on the Biology of Fish. American Fish Society, Baltimore. pp 223–230Google Scholar
  31. Neuhauser EF, Loehr RC, Milligan DL, Malecki MR (1985) Toxicity of metals to the earthworm Eisenia fetida. Biol Fert Soils 1:149–152CrossRefGoogle Scholar
  32. Nyholm NEI (1998) Influence of heavy metal exposure during different phases of the ontogeny on the development of pied flycatchers, Ficedula hypoleuca, in natural populations. Arch Environ Contam Toxicol 35:632–637CrossRefGoogle Scholar
  33. Ochiai T (1984) Dissociation and oxygen equilibrium properties of the extracellular hemoglobin of Eisenia foetida. Arch Biochem Biophys 231:136–143CrossRefGoogle Scholar
  34. OECD (1984) Earthworms, acute toxicity tests. In: OECD, guideline for testing chemicals nr. 207, vol 1. OECD, Paris, pp 1–9Google Scholar
  35. Paoletti M (1999) The role of earthworms for assessment of sustainability and as bioindicators. Agric Ecosyst Environ 74:137–155CrossRefGoogle Scholar
  36. Pauluhn J (2005) Concentration dependence of aniline-induced methemoglobinemia in dogs: a derivation of an acute reference concentration. Toxicology 214:140–150CrossRefGoogle Scholar
  37. Peijnenburg WJGM, Baerselman R, De Groot AC, Jager T, Posthuma L, Van Veen RPM (1999) Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei. Ecotoxicol Environ Saf 44:294–310CrossRefGoogle Scholar
  38. Piddington SK, White JM (1974) Effects of lead on the total globin and alpha and beta chain synthesis in vitro and in vivo. Br J Haematol 27:415–424CrossRefGoogle Scholar
  39. Polidori G, Mainwaring MG, Vinogradov SN (1988) The effect of alkaline earth cations and of ionic strength on the dissociation of earthworm hemoglobin at alkaline pH. Comp Biochem Physiol A 89:541–545CrossRefGoogle Scholar
  40. Rempel D (ed) (1990) Occupational medicine state of the art reviews: medical surveillance in the workplace, vol 5. Hanley and Belfus, Philadelphia, pp 435–652Google Scholar
  41. Remyla SR, Ramesh M, Sajwan KS, Senthil Kumar K (2008) Influence of zinc on cadmium induced haematological and biochemical responses in a freshwater teleost fish Catla catla. Fish Physiol Biochem 34:169–174CrossRefGoogle Scholar
  42. Rogival D, Scheirs J, De Coen W, Verhagen R, Blust R (2006) Metal blood levels and haematological characteristics in woodmice (Apodemus sylvaticus L.) along a metal pollution gradient. Environ Toxicol Chem 25:149–157CrossRefGoogle Scholar
  43. Rozen A, Mazur L (1997) Influence of different levels of traffic pollution on Haemoglobin content in the earthworm Lumbricus Terrestris. Soil Biol Biochem 29:709–711CrossRefGoogle Scholar
  44. Sanchez-Hernandez JC (2006) Earthworms biomarkers in ecological risk assessment. Rev Environ Contam Toxicol 188:85–126CrossRefGoogle Scholar
  45. Santucci R, Chiancone E, Giardina B (1984) Oxygen binding to Octolasium complanatum erythrocruorin. Modulation of homo- and hetero-trophic interactions by cations. J Mol Biol 179:713–727CrossRefGoogle Scholar
  46. Saxe JK, Impellitteri CA, Peijnenburg WJGM, Allen HE (2001) Novel model describing trace metal concentrations in the earthworm, Eisenia andrei. Environ Sci Technol 35:4522–4529CrossRefGoogle Scholar
  47. Smith RC, Reed VD (1993) Reversal of copper(II)-induced methemoglobin formation by thiols. J Inorg Biochem 52:173–182CrossRefGoogle Scholar
  48. Spurgeon DJ, Hopkin SP (1996) Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia foetida. Pedobiologia 40:80–96Google Scholar
  49. Strand K, Knapp JE, Bhyravbhatla B, Royer WE Jr (2004) Crystal structure of the hemoglobin dodecamer from lumbricus erythrocruorin: allosteric core of giant annelid respiratory complexes. J Mol Biol 344:119–134CrossRefGoogle Scholar
  50. Suyama H, Morikawa S, Noma-Tanaka S, Adachi H, Kawano Y, Kaneko K, Ishihara S (2005) Methemoglobinemia induced by automobile exhaust fumes. J Anesth 19:333–335CrossRefGoogle Scholar
  51. Viarengo A, Ponzano E, Dondero F, Fabbri R (1997) A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar Environ Res 44:69–84CrossRefGoogle Scholar
  52. Vijver MG, Vink JPM, Miermans CJH, Van Gestel CAM (2003) Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biol Biochem 35:125–132CrossRefGoogle Scholar
  53. Walsh P, El Adlouni C, Mukhopadhyay MJ, Viel G, Nadeau D, Poirier GG (1995) 32P-postlabelling determination of DNA adducts in the earthworm Lumbricus terrestris exposed to PAH-contaminated soils. Bull Environ Contam Toxicol 54:654–661Google Scholar
  54. Weber RE (1978) Respiratory pigments. In: Mill PJ (ed) Physiology of annelids. Academic Press, New York, pp 393–446Google Scholar
  55. Weeks BA, Anderson DP, Dufour AP, Fairbrother A, Goven AJ, Lahvis GP, Peres G (1992) Immunological biomarkers to assess environmental stress. Biomarkers: biochemical, physiological, and histological markers of anthropogenic stress. In: Huggett RJ, Kimerle RA, Mehrle PM Jr, Bergman HL (eds) SETAC special publication series. Lewis, Boca Raton, pp 211–234Google Scholar
  56. Zhu H, Hargrove M, Xie Q, Nozaki Y, Linse K, Smith SS, Olson JS, Riggs AF (1996) Stoichiometry of subunits and heme content of hemoglobin from the earthworm Lumbricus terrestris. J Biol Chem 271:29999–30006CrossRefGoogle Scholar
  57. Zikic V, Stajn AS, Ognjanovic BI, Pavlovic SZ, Saicic ZS (1997) Activities of superoxide dismutase and catalase in erythrocytes and transaminases in the plasma of carps (Cyprinus carpio L.) exposed to cadmium. Physiol Res 46:391–396Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Calisi
    • 1
  • M. G. Lionetto
    • 1
    Email author
  • J. C. Sanchez-Hernandez
    • 2
  • T. Schettino
    • 1
  1. 1.Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
  2. 2.Department of Environmental SciencesUniversity of Castilla La ManchaToledoSpain

Personalised recommendations