Advertisement

Ecotoxicology

, Volume 20, Issue 3, pp 607–624 | Cite as

Epigenetics and its implications for ecotoxicology

  • Michiel B. Vandegehuchte
  • Colin R. Janssen
Article

Epigenetics is the study of mitotically or meiotically heritable changes in gene function that occur without a change in the DNA sequence. Interestingly, epigenetic changes can be triggered by environmental factors. Environmental exposure to e.g. metals, persistent organic pollutants or endocrine disrupting chemicals has been shown to modulate epigenetic marks, not only in mammalian cells or rodents, but also in environmentally relevant species such as fish or water fleas. The associated changes in gene expression often lead to modifications in the affected organism’s phenotype. Epigenetic changes can in some cases be transferred to subsequent generations, even when these generations are no longer exposed to the external factor which induced the epigenetic change, as observed in a study with fungicide exposed rats. The possibility of this phenomenon in other species was demonstrated in water fleas exposed to the epigenetic drug 5-azacytidine. This way, populations can experience the effects of their ancestors’ exposure to chemicals, which has implications for environmental risk assessment. More basic research is needed to assess the potential phenotypic and population-level effects of epigenetic modifications in different species and to evaluate the persistence of chemical exposure-induced epigenetic effects in multiple subsequent generations.

Keywords

DNA methylation Transgenerational effects Invertebrates Environmental toxicology 

Notes

Acknowledgments

The authors wish to thank two anonymous reviewers and the editor dr. Richard Handy for their constructive comments which improved the manuscript.

References

  1. Aagaard-Tillery KM, Grove K, Bishop J, Ke XR, Fu Q, McKnight R, Lane RH (2008) Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 41(1–2):91–102. doi: 10.1677/jme-08-0025 Google Scholar
  2. Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant 121(3):472–480Google Scholar
  3. Allis CD, Jenuwein T, Reinberg D (2007) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  4. Aniagu SO, Williams TD, Allen Y, Katsiadaki I, Chipman JK (2008) Global genomic methylation levels in the liver and gonads of the three-spine stickleback (Gasterosteus aculeatus) after exposure to hexabromocyclododecane and 17-[beta] oestradiol. Environ Int 34(3):310–317Google Scholar
  5. Anway MD, Skinner MK (2008) Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease. Prostate 68(5):517–529Google Scholar
  6. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308(5727):1466–1469Google Scholar
  7. Anway MD, Leathers C, Skinner MK (2006) Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147(12):5515–5523. doi: 10.1210/en.2006-0640 Google Scholar
  8. Anway MD, Rekow SS, Skinner MK (2008) Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics 91(1):30–40Google Scholar
  9. Baccarelli A, Bollati V (2009) Epigenetics and environmental chemicals. Curr Opin Pediatr 21(2):243–251. doi: 10.1097/MOP.0b013e32832925cc Google Scholar
  10. Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179(7):572–578. doi: 10.1164/rccm.200807-1097OC Google Scholar
  11. Backdahl L, Herberth M, Wilson G, Tate P, Campos LS, Cortese R, Eckhardt F, Beck S (2009) Gene body methylation of the dimethylarginine dimethylamino-hydrolase 2 (Ddah2) gene is an epigenetic biomarker for neural stem cell differentiation. Epigenetics 4(4):248–254Google Scholar
  12. Bartova E, Krejci J, Harnicarova A, Galiova G, Kozubek S (2008) Histone modifications and nuclear architecture: a review. J Histochem Cytochem 56(8):711–721. doi: 10.1369/jhc.2008.951251 Google Scholar
  13. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17(5):387–395. doi: 10.1007/s10646-008-0208-y Google Scholar
  14. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783. doi: 10.1101/gad.1787609 Google Scholar
  15. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21Google Scholar
  16. Bocock PN, Aagaard-Tillery KM (2009) Animal models of epigenetic inheritance. Semin Reprod Med 27(5):369–379. doi: 10.1055/s-0029-1237425 Google Scholar
  17. Bollati V, Baccarelli A (2010) Environmental epigenetics. Heredity 105(1):105–112. doi: 10.1038/hdy.2010.2 Google Scholar
  18. Bonduriansky R, Day T (2009) Nongenetic inheritance and its evolutionary implications. Annu Rev Ecol Evol Syst 40:103–125. doi: 10.1146/annurev.ecolsys.39.110707.173441 Google Scholar
  19. Bongiorni S, Cintio O, Prantera G (1999) The relationship between DNA methylation and chromosome imprinting in the coccid planococcus citri. Genetics 151(4):1471–1478Google Scholar
  20. Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11(2):106–115. doi: 10.1111/j.1461-0248.2007.01130.x Google Scholar
  21. Boyko A, Blevins T, Yao YL, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F, Kovalchuk I (2010) Transgenerational adaptation of arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS ONE 5(3). doi: 10.1371/journal.pone.0009514
  22. Bromer JG, Wu J, Zhou Y, Taylor HS (2009) Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology 150(7):3376–3382. doi: 10.1210/en.2009-0071 Google Scholar
  23. Brown KH, Schultz IR, Nagler JJ (2009) Lack of a heritable reproductive defect in the offspring of male rainbow trout exposed to the environmental estrogen 17[alpha]-ethynylestradiol. Aquat Toxicol 91(1):71–74Google Scholar
  24. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA (2007) Dietary protein restriction of pregnant rats in the F-0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F-1 and F-2 generations. Br J Nutr 97(3):435–439. doi: 10.1017/s0007114507352392 Google Scholar
  25. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655Google Scholar
  26. Chang H-S, Anway MD, Rekow SS, Skinner MK (2006) Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination. Endocrinology 147(12):5524–5541. doi: 10.1210/en.2006-0987 Google Scholar
  27. Chang H-S, Anway MD, Rekow SS, Skinner MK (2009) Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination (Retraction of vol 147, p. 5524, 2006). Endocrinology 150(6):2976Google Scholar
  28. Choi AO, Brown SE, Szyf M, Maysinger D (2008) Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med 86(3):291–302. doi: 10.1007/s00109-007-0274-2 Google Scholar
  29. Choudhuri S, Cui Y, Klaassen CD (2010) Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol Appl Pharmacol 245:378–393Google Scholar
  30. Collier J (2009) Epigenetic regulation of the bacterial cell cycle. Curr Opin Microbiol 12(6):722–729. doi: 10.1016/j.mib.2009.08.005 Google Scholar
  31. Costa M, Davidson TL, Chen H, Ke Q, Zhang P, Yan Y, Huang C, Kluz T (2005) Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat Res 592(1–2):79–88Google Scholar
  32. Counts JL, Sarmiento JI, Harbison ML, Downing JC, McClain RM, Goodman JI (1996) Cell proliferation and global methylation status changes in mouse liver after phenobarbital and/or choline-devoid, methionine-deficient diet administration. Carcinogenesis 17(6):1251–1257. doi: 10.1093/carcin/17.6.1251 Google Scholar
  33. Cropley JE, Suter CM, Beckman KB, Martin DIK (2006) Germ-line epigenetic modification of the murine A(vy) allele by nutritional supplementation. Proc Natl Acad Sci USA 103(46):17308–17312. doi: 10.1073/pnas.0607090103 Google Scholar
  34. Cui P, Zhang L, Lin Q, Ding F, Xin C, Fang X, Hu S, Yu J (2010) A novel mechanism of epigenetic regulation: nucleosome-space occupancy. Biochem Biophys Res Commun 391(1):884–889Google Scholar
  35. Dalkvist T, Topping CJ, Forbes VE (2009) Population-level impacts of pesticide-induced chronic effects on individuals depend more on ecology than toxicology. Ecotoxicol Environ Saf 72(6):1663–1672Google Scholar
  36. Day JK, Bauer AM, desBordes C, Zhuang Y, Kim BE, Newton LG, Nehra V, Forsee KM, MacDonald RS, Besch-Williford C, Huang THM, Lubahn DB (2002) Genistein alters methylation patterns in mice. J Nutr 132(8):2419S–2423SGoogle Scholar
  37. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesty by modifying the fetal epigenome. Environ Health Perspect 114(4):567–572Google Scholar
  38. Field LM (2000) Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer). Biochem J 349:863–868Google Scholar
  39. Field LM, Lyko F, Mandrioli M, Prantera G (2004) DNA methylation in insects. Insect Mol Biol 13(2):109–115Google Scholar
  40. Foret S, Kucharski R, Pittelkow Y, Lockett G, Maleszka R (2009) Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes. BMC Genom 10(1):472Google Scholar
  41. Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15(5):490–495Google Scholar
  42. Gong C, Tao G, Yang L, Liu J, Liu Q, Zhuang Z (2010) SiO2 nanoparticles induce global genomic hypomethylation in HaCaT cells. Biochem Biophys Res Commun 397(3):397–400Google Scholar
  43. Goodman JI, Augustine KA, Cunnningham ML, Dixon D, Dragan YP, Falls JG, Rasoulpour RJ, Sills RC, Storer RD, Wolf DC, Pettit SD (2010) What do we need to know prior to thinking about incorporating an epigenetic evaluation into safety assessments?(2). Toxicol Sci 116(2):375–381. doi: 10.1093/toxsci/kfq133 Google Scholar
  44. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci 105(44):17046–17049. doi: 10.1073/pnas.0806560105 Google Scholar
  45. Henckel A, Nakabayashi K, Sanz LA, Feil R, Hata K, Arnaud P (2009) Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals. Hum Mol Genet 18(18):3375–3383. doi: 10.1093/hmg/ddp277 Google Scholar
  46. Herrera CM, Bazaga P (2010) Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol 187(3):867–876. doi: 10.1111/j.1469-8137.2010.03298.x Google Scholar
  47. Ho DH, Burggren WW (2010) Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol 213(1):3–16. doi: 10.1242/jeb.019752 Google Scholar
  48. Holliday R (1994) Epigenetics: an overview. Dev Genet 15(6):453–457Google Scholar
  49. Huang Z, Chen Y, Zhao Y, Zuo Z, Chen M, Wang C (2005) Antioxidant responses in Meretrix meretrix exposed to environmentally relevant doses of tributyltin. Environ Toxicol Pharmacol 20(1):107–111Google Scholar
  50. Huang D, Zhang Y, Qi Y, Chen C, Ji W (2008) Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of Cadmium-stimulated K562 cell proliferation. Toxicol Lett 179(1):43–47Google Scholar
  51. Inawaka K, Kawabe M, Takahashi S, Doi Y, Tomigahara Y, Tarui H, Abe J, Kawamura S, Shirai T (2009) Maternal exposure to anti-androgenic compounds, vinclozolin, flutamide and procymidone, has no effects on spermatogenesis and DNA methylation in male rats of subsequent generations. Toxicol Appl Pharmacol 237(2):178–187Google Scholar
  52. Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms and implications for the study of heredity and evolution. Q Rev Biol 84(2):131–176Google Scholar
  53. Jeltsch A, Nellen W, Lyko F (2006) Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem Sci 31(6):306–308Google Scholar
  54. Jensen TJ, Novak P, Wnek SM, Gandolfi AJ, Futscher BW (2009) Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol Appl Pharmacol 241(2):221–229Google Scholar
  55. Jernström B, Funk M, Frank H, Mannervik B, Seidel A (1996) CARCINOGENESIS: Glutathione S-transferase A1-1-catalysed conjugation of bay and fjord region diol epoxides of polycyclic aromatic hydrocarbons with glutathione. Carcinogenesis 17(7):1491–1498. doi: 10.1093/carcin/17.7.1491 Google Scholar
  56. Jiang GF, Xu L, Song SZ, Zhu CC, Wu Q, Zhang L (2008) Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology 244:49–55. doi: 10.1016/j.tox.2007.10.028 Google Scholar
  57. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillmann C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. Plos Genet 5(6). doi: e100053010.1371/journal.pgen.1000530
  58. Jurkowski TP, Meusburger M, Phalke S, Helm M, Nellen W, Reuter G, Jeltsch A (2008) Human DNMT2 methylates tRNAAsp molecules using a DNA methyltransferase-like catalytic mechanism. RNA 14(8):1663–1670. doi: 10.1261/rna.970408 Google Scholar
  59. Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319(5871):1827–1830. doi: 10.1126/science.1153069 Google Scholar
  60. Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in arabidopsis. Mol Plant 3(3):594–602. doi: 10.1093/mp/ssq014 Google Scholar
  61. LeBaron MJ, Rasoulpour RJ, Klapacz J, Ellis-Hutchings RG, Hollnagel HM, Gollapudi BB (2010) Epigenetics and chemical safety assessment. Mutat Res/Rev Mutat Res 705:83–95Google Scholar
  62. Lee YW, Broday L, Costa M (1998) Effects of nickel on DNA methyltransferase activity and genomic DNA methylation levels. Mutat Res 415:213–218Google Scholar
  63. Lee DH, Jacobs DR, Porta M (2009) Hypothesis: a unifying mechanism for nutrition and chemicals as lifelong modulators of DNA hypomethylation. Environ Health Perspect 117(12):1799–1802. doi: 10.1289/ehp.0900741 Google Scholar
  64. Legler J (2010) Epigenetics: an emerging field in environmental toxicology. Integr Environ Assess Manage 6(2):314–315Google Scholar
  65. Lennartsson A, Ekwall K (2009) Histone modification patterns and epigenetic codes. Biochimica et Biophysica Acta (BBA)—General Subjects 1790(9):863–868Google Scholar
  66. Li S, Hansman R, Newbold R, Davis B, McLachlan JA, Barrett JC (2003) Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol Carcinog 38(2):78–84Google Scholar
  67. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135(6):1382–1386Google Scholar
  68. Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431(7006):364–370Google Scholar
  69. Lyko F (2001) DNA methylation learns to fly. Trends Genet 17(4):169–172Google Scholar
  70. MacKay AB, Mhanni AA, McGowan RA, Krone PH (2007) Immunological detection of changes in genomic DNA methylation during early zebrafish development. Genome 50(8):778–785. doi: 10.1139/g07-055 Google Scholar
  71. Majid S, Dar AA, Shahryari V, Hirata H, Ahmad A, Saini S, Tanaka Y, Dahiya AV, Dahiya R (2010) Genistein reverses hypermethylation and induces active histone modifications in tumor suppressor gene B-Cell translocation gene 3 in prostate cancer. Cancer 116(1):66–76Google Scholar
  72. Marsit CJ, Eddy K, Kelsey KT (2006) MicroRNA responses to cellular stress. Cancer Res 66(22):10843–10848. doi: 10.1158/0008-5472.can-06-1894 Google Scholar
  73. Martienssen R (2008) Great leap forward? Transposable elements, small interfering RNA and adaptive Lamarckian evolution. New Phytol 179(3):570–572. doi: 10.1111/j.1469-8137.2008.02567.x Google Scholar
  74. Metivier R, Gallais R, Tiffoche C, Le Peron C, Jurkowska RZ, Carmouche RP, Ibberson D, Barath P, Demay F, Reid G, Benes V, Jeltsch A, Gannon F, Salbert G (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452(7183):45–50Google Scholar
  75. Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23(3):314–318Google Scholar
  76. Morgan AJ, Kille P, Sturzenbaum SR (2007) Microevolution and ecotoxicology of metals in invertebrates. Environ Sci Technol 41(4):1085–1096Google Scholar
  77. Nan XS, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389Google Scholar
  78. Newbold RR, Padilla-Banks E, Jefferson WN (2006) Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology 147(6):S11–S17Google Scholar
  79. Nilsson EE, Anway MD, Stanfield J, Skinner MK (2008) Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. Reproduction 135(5):713–721. doi: 10.1530/rep-07-0542 Google Scholar
  80. Ou X, Long L, Zhang Y, Xue Y, Liu J, Lin X, Liu B (2009) Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.). Mutat Res 662(1–2):44–53Google Scholar
  81. Pilsner JR, Hu H, Ettinger A, Sanchez BN, Wright RO, Cantonwine D, Lazarus A, Lamadrid-Figueroa H, Mercado-Garcia A, Tellez-Rojo MM, Hernandez-Avila M (2009) Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect 117(9):1466–1471. doi: 10.1289/ehp.0800497 Google Scholar
  82. Pilsner JR, Lazarus AL, Nam DH, Letcher RJ, Sonne C, Dietz R, Basu N (2010) Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Mol Ecol 19(2):307–314. doi: 10.1111/j.1365-294X.2009.04452.x Google Scholar
  83. Pruss D, Hayes JJ, Wolffe AP (1995) Histone and DNA contributions to nucleosome structure. In: Wolffe AP (ed) The nucleus, volume 1: the nucleosome. pp 3–29Google Scholar
  84. Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KVK, Whitelaw E (2003) Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission. Proc Natl Acad Scies 100(5):2538–2543. doi: 10.1073/pnas.0436776100 Google Scholar
  85. Riggs AD, Martienssen RA, Russo VEA (1996) Introduction. In: Russo VEA, Martienssen RA, Riggs AD (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 1–4Google Scholar
  86. Ropero S, Esteller M (2009) Epigenetics and cancer: DNA methylation. In: Esteller M (ed) Epigenetics in biology and medicine. CRC Press, Boca Raton, FLGoogle Scholar
  87. Rosenfeld CS (2010) Animal models to study environmental epigenetics. Biol Reprod 82(3):473–488. doi: 10.1095/biolreprod.109.080952 Google Scholar
  88. Ross SA (2009) Nutrition, epigenetics, and cancer. In: Choi S-W, Friso S (eds) Nutrients and epigenetics. CRC Press, Boca Raton, FLGoogle Scholar
  89. Rusiecki JA, Baccarelli A, Bollati V, Tarantini L, Moore LE, Bonefeld-Jorgensen EC (2008) Global DNA hypomethylation is associated with high serum-persistent organic pollutants in greenlandic Inuit. Environ Health Perspect 116(11):1547–1552. doi: 10.1289/ehp.11338 Google Scholar
  90. Schaefer M, Lyko F (2007) DNA methylation with a sting: an active DNA methylation system in the honeybee. Bioessays 29(3):208–211. doi: 10.1002/bies.20548 Google Scholar
  91. Schneider S, Kaufmann W, Buesen R, van Ravenzwaay B (2008) Vinclozolin—the lack of a transgenerational effect after oral maternal exposure during organogenesis. Reprod Toxicol 25(3):352–360Google Scholar
  92. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G (2007) Genome regulation by polycomb and trithorax proteins. Cell 128(4):735–745Google Scholar
  93. Shugart LR (1990) 5-Methyl deoxycytidine content of DNA from bluegill sunfish (Lepomis macrochirus) exposed to benzo[a]pyrene. Environ Toxicol Chem 9(2):205–208Google Scholar
  94. Skinner MK, Manikkam M, Guerrero-Bosagna C (2010) Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrin Met 21(4):214–222Google Scholar
  95. Soares J, Coimbra AM, Reis-Henriques MA, Monteiro NM, Vieira MN, Oliveira JMA, Guedes-Dias P, Fontaínhas-Fernandes A, Parra SS, Carvalho AP, Castro LFC, Santos MM (2009) Disruption of zebrafish (Danio rerio) embryonic development after full life-cycle parental exposure to low levels of ethinylestradiol. Aquat Toxicol 95(4):330–338Google Scholar
  96. Stouder C, Paoloni-Giacobino A (2010) Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 139(2):373–379. doi: 10.1530/rep-09-0340 Google Scholar
  97. Stromqvist M, Tooke N, Brunstrom B (2010) DNA methylation levels in the 5′ flanking region of the vitellogenin I gene in liver and brain of adult zebrafish (Danio rerio)—sex and tissue differences and effects of 17 alpha-ethinylestradiol exposure. Aquat Toxicol 98(3):275–281. doi: 10.1016/j.aquatox.2010.02.023 Google Scholar
  98. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476. doi: 10.1038/nrg2341 Google Scholar
  99. Suzuki MM, Kerr ARW, De Sousa D, Bird A (2007) CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res 17(5):625–631. doi: 10.1101/gr.6163007 Google Scholar
  100. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935. doi: 10.1126/science.1170116 Google Scholar
  101. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP (2003) Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286:355–365Google Scholar
  102. Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B, Cantone L, Rizzo G, Hou L, Schwartz J, Bertazzi PA, Baccarelli A (2009) Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect 117(2):217–222Google Scholar
  103. Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga MF, Voinnet O, Wincker P, Esteller M, Colot V (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323(5921):1600–1604. doi: 10.1126/science.1165313 Google Scholar
  104. The Nasonia Genome Working Group (2010) Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327(5963):343–348. doi: 10.1126/science.1178028 Google Scholar
  105. Tweedie S, Charlton J, Clark V, Bird A (1997) Methylation of genomes and genes at the invertebrate-vertebrate boundary. Mol Cell Biol 17(3):1469–1475Google Scholar
  106. Tweedie S, Ng HH, Barlow AL, Turner BM, Hendrich B, Bird A (1999) Vestiges of a DNA methylation system in Drosophila melanogaster? Nat Genet 23(4):389–390Google Scholar
  107. Vandegehuchte MB, Kyndt T, Vanholme B, Haegeman A, Gheysen G, Janssen CR (2009a) Occurrence of DNA methylation in Daphnia magna and influence of multigeneration Cd exposure. Environ Int 35:700–706Google Scholar
  108. Vandegehuchte MB, Lemière F, Janssen CR (2009b) Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure. Comp Biochem Phys C 150(3):343–348Google Scholar
  109. Vandegehuchte MB, De Coninck D, Vandenbrouck T, De Coen WM, Janssen CR (2010a) Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna. Environ Pollut 158:3323–3329Google Scholar
  110. Vandegehuchte MB, Lemière F, Vanhaecke L, Vanden Berghe W, Janssen CR (2010b) Direct and transgenerational impact on Daphnia magna of chemicals with a known effect on DNA methylation. Comp Biochem Physiol C 151:278–285Google Scholar
  111. Vandegehuchte MB, Vandenbrouck T, Coninck DD, De Coen WM, Janssen CR (2010c) Can metal stress induce transferable changes in gene transcription in Daphnia magna? Aquat Toxicol 97(3):188–195Google Scholar
  112. Verhoeven K, Jansen J, van Dijk P, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118Google Scholar
  113. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078):871–874. doi: 10.1038/nature04431 Google Scholar
  114. Waddington CH (1939) Introduction to modern genetics. Allen and Unwin, LondonGoogle Scholar
  115. Wang Y, Leung FCC (2008) GC content increased at CpG flanking positions of fish genes compared with sea squirt orthologs as a mechanism for reducing impact of DNA methylation. PLoS ONE 3(11):e3612Google Scholar
  116. Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, Robertson HM, Mizzen CA, Peinado MA, Robinson GE (2006) Functional CpG methylation system in a social insect. Science 314(5799):645–647Google Scholar
  117. Wang Y, Wang C, Zhang J, Chen Y, Zuo Z (2009) DNA hypomethylation induced by tributyltin, triphenyltin, and a mixture of these in sebastiscus marmoratus liver. Aquat Toxicol 95(2):93–98Google Scholar
  118. Wassenegger M (2005) The role of the RNAi machinery in heterochromatin formation. Cell 122(1):13–16Google Scholar
  119. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23(15):5293–5300Google Scholar
  120. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG (2006) Maternal methyl supplements increase offspring DNA methylation at axin fused. Genesis 44(9):401–406Google Scholar
  121. Waterland RA, Travisano M, Tahiliani KG (2007) Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J 21(12):3380–3385. doi: 10.1096/fj.07-8229com Google Scholar
  122. Watson RE, Goodman JI (2002) Effects of phenobarbital on DNA methylation in GC-rich regions of hepatic DNA from mice that exhibit different levels of susceptibility to liver tumorigenesis. Toxicol Sci 68(1):51–58. doi: 10.1093/toxsci/68.1.51 Google Scholar
  123. Watters E (2006) DNA is not destiny. Discover Nov:32–37, 95Google Scholar
  124. Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854Google Scholar
  125. Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH (2008) Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): Evidence for a developmental origin and environmental link for AD. J Neurosci 28(1):3–9. doi: 10.1523/jneurosci.4405-07.2008 Google Scholar
  126. Wu SD, Zhu J, Li YS, Lin T, Gan LQ, Yuan XG, Xiong J, Liu X, Xu MD, Zhao D, Ma C, Li XL, Wei GH (2010) Dynamic epigenetic changes involved in testicular toxicity induced by di-2-(ethylhexyl) phthalate in mice. Basic Clin Pharmacol Toxicol 106(2):118–123. doi: 10.1111/j.1742-7843.2009.00483.x Google Scholar
  127. Yakovlev IA, Asante DKA, Fossdal CG, Junttila O, Johnsen Ø (2011) Differential gene expression related to an epigenetic memory affecting climatic adaptation in Norway spruce. Plant Sci 180(1):132–139Google Scholar
  128. Yauk C, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schboten FJ, Berndt ML, Pogribny IF, Koturbash I, Williams A, Douglas GR, Kovalchuk O (2008) Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location. Proc Natl Acad Sci U S A 105(2):605–610. doi: 10.1073/pnas.0705896105 Google Scholar
  129. Youngson N, Whitelaw E (2008) Transgenerational epigenetic effects. Annu Rev Genom Hum Genet 9(1):233–257Google Scholar
  130. Yu Z (2008) Non-coding RNAs in gene regulation. In: Tost J (ed) Epigenetics. Caister Academic Press, Norfolk, UK, pp 171–186Google Scholar
  131. Zhang X (2008) The epigenetic landscape of plants. Science 320(5875):489–492. doi: 10.1126/science.1153996 Google Scholar
  132. Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A 94(20):10907–10912Google Scholar
  133. Zhou XW, Zhu GN, Jilisa M, Sun JH (2001) Influence of Cu, Zn, Pb, Cd and their heavy metalion mixture on the DNA methylation level of the fish (Carassius auratus). China Environ Sci 21(6):549–552Google Scholar
  134. Zhou X, Li Q, Arita A, Sun H, Costa M (2009) Effects of nickel, chromate, and arsenite on histone 3 lysine methylation. Toxicol Appl Pharmacol 236(1):78–84Google Scholar
  135. Zilberman D (2008) The evolving functions of DNA methylation. Curr Opin Plant Biol 11:554–559Google Scholar
  136. Zilberman D, Henikoff S (2005) Epigenetic inheritance in Arabidopsis: selective silence. Curr Opin Genet Dev 15(5):557–562Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory of Environmental Toxicology and Aquatic EcologyGhent University (UGent)GhentBelgium

Personalised recommendations