, Volume 20, Issue 1, pp 226–233 | Cite as

Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida

  • Lars-Henrik Heckmann
  • Mads B. Hovgaard
  • Duncan S. Sutherland
  • Herman Autrup
  • Flemming Besenbacher
  • Janeck J. Scott-Fordsmand


The toxicity of a range of inorganic (Ag, Cu, Ni, Al2O3, SiO2, TiO2 and ZrO2) nanoparticles (NP) and their corresponding metal salt or bulk metal oxide were screened for toxicity toward the earthworm Eisenia fetida using the limit-test design (1000 mg/kg). This study provides the first ecotoxicological life history trait data on earthworms for each these NPs, as well as for AgNO3, Al2O3, SiO2, TiO2 and ZrO2. Significant effects were observed on survival for AgNO3 (2.5% of controls), CuCl2 (17.5% of controls) and NiCl2 (32.5% of controls) and on reproduction (AgNO3, CuCl2, NiCl2, Ag-NP, Cu-NP, TiO2-NP); with total reproductive failure in both silver treatments. Ag-NP, Cu-NP and TiO2-NP were the only NPs that caused toxic effects to E. fetida. The toxicity could not be singularly related to particle size or zeta potential or to the inherent element constituting the NPs (e.g. Ag).


Soil toxicity Invertebrates Nanomaterials Nanoparticles Metal Metal oxides 



We are grateful for the financial support of the Danish Strategic Research Council through the NABIIT project 2006-06-0015 “SUNANO—Risk assessment of free nanoparticles”. We are indebted to Jacques Chevalier, Institute of Physics and Astronomy, Aarhus University, and Martin Bremholm and Peter Hald, Department of Chemistry, Aarhus University for technical assistance and discussions concerning NP characterisation. We also thank Elin Jørgensen, Trine G. Sørensen and Mette Thomson, National Environmental Research Institute, Aarhus University for technical assistance during the biological experiments and University of Bremen for the Al2O3-NP sample.


  1. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532CrossRefGoogle Scholar
  2. Besenbacher F, Nørskov JK (1993) Oxygen chemisorption on metal surfaces: general trends for Cu, Ni and Ag. Prog Surf Sci 44:5–66CrossRefGoogle Scholar
  3. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32CrossRefGoogle Scholar
  4. Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:421–437CrossRefGoogle Scholar
  5. Griffitt RJ, Luo J, Gao J, Bonzongo J-C, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978CrossRefGoogle Scholar
  6. Gurr JR, Wang ASS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73CrossRefGoogle Scholar
  7. Hald P, Becker J, Bremholm M, Pedersen JS, Chevallier J, Iversen SB, Iversen BB (2006) Supercritical propanol-water synthesis and comprehensive size characterisation of highly crystalline anatase TiO2 nanoparticles. J Solid State Chem 179:2674–2680CrossRefGoogle Scholar
  8. Handy RD, Kammer FVD, Lead JR, Hassellöv M, Owen R, Crane M (2008a) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314CrossRefGoogle Scholar
  9. Handy RD, Henry TB, Scown TM, Johnston BD, Tyler CR (2008b) Manufactured nanoparticles: their uptake and effects on fish-a mechanistic analysis. Ecotoxicology 17:396–409CrossRefGoogle Scholar
  10. Holmstrup M, Krogh PH, Løkke H, de Wolf W, Marshall S, Fox K (2001) Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 4. The influence of salt speciation, soil type, and sewage sludge on toxicity using the collembolan Folsomia fimetaria and the earthworm Aporrectodea caliginosa as test organisms. Environ Toxicol Chem 20:1680–1689Google Scholar
  11. Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591CrossRefGoogle Scholar
  12. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983CrossRefGoogle Scholar
  13. Jemec A, Drobne D, Remškar M, Sepčić K, Tišler T (2008) Effects of ingested nano-sized titanium dioxide on terrestrial isopods Porcellio scaber. Environ Toxicol Chem 27:1904–1914CrossRefGoogle Scholar
  14. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851CrossRefGoogle Scholar
  15. Langford JI, Louër D (1996) Powder diffraction. Rep Prog Phys 59:131–234CrossRefGoogle Scholar
  16. Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250CrossRefGoogle Scholar
  17. Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C-60) nanoparticles. Environ Toxicol Chem 25:1132–1137CrossRefGoogle Scholar
  18. Meng H, Chen Z, Xing GM, Yuan H, Chen CY, Zhao F, Zhang CC, Zhao YL (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175:102–110CrossRefGoogle Scholar
  19. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253CrossRefGoogle Scholar
  20. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964CrossRefGoogle Scholar
  21. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  22. OECD (2004) OECD Guidelines for the Testing of Chemicals. no. 222. Earthworm reproduction test (Eisenia fetida/Eisenia andrei). Organization for economic cooperation and development, Paris, 18 ppGoogle Scholar
  23. Petersen EJ, Huang QG, Weber WJ (2008) Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environ Sci Technol 42:3090–3095CrossRefGoogle Scholar
  24. Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108CrossRefGoogle Scholar
  25. Scott-Fordsmand JJ, Krogh PH, Schaefer M, Johansen A (2008a) The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Ecotoxicol Environ Saf 71:616–619CrossRefGoogle Scholar
  26. Scott-Fordsmand JJ, Krogh PH, Lead JR (2008b) Nanomaterials in ecotoxicology. Int Environ Assess Manag 4:126–128CrossRefGoogle Scholar
  27. Zhu JW, Bi HP, Wang YP, Wang X, Yang XJ, Lu LD (2007) Synthesis of flower-like CuO nanostructures via a simple hydrolysis route. Mater Lett 61:5236–5238CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lars-Henrik Heckmann
    • 1
  • Mads B. Hovgaard
    • 2
  • Duncan S. Sutherland
    • 2
  • Herman Autrup
    • 3
  • Flemming Besenbacher
    • 2
  • Janeck J. Scott-Fordsmand
    • 1
  1. 1.Department of Terrestrial EcologyNational Environmental Research Institute, Aarhus UniversitySilkeborgDenmark
  2. 2.Department of Physics and AstronomyInterdisciplinary Nanoscience Center (iNANO), Aarhus UniversityAarhus CDenmark
  3. 3.Institute for Public Health, Aarhus UniversityAarhus CDenmark

Personalised recommendations