, Volume 20, Issue 1, pp 39–46 | Cite as

Mercury exposure and survival in free-living tree swallows (Tachycineta bicolor)

  • Kelly K. HallingerEmail author
  • Kerri L. Cornell
  • Rebecka L. Brasso
  • Daniel A. Cristol


Mercury has become a ubiquitous contaminant in food chains worldwide. A large body of literature detailing bioaccumulation and effects on birds has revealed the potential for mercury to adversely impact avian physiology and reproduction. However, the extent to which these effects impair survival remains poorly understood. The objective of this study was to determine whether mercury exposure was associated with reduced annual survivorship in tree swallows (Tachycineta bicolor) breeding at a site with legacy industrial contamination. From 2005 to 2008, we captured and marked 932 adult swallows. We used Cormack-Jolly-Seber models and an information-theoretic approach to test our hypotheses that adult survival varied by sex, breeding location, and cumulative individual mercury exposure. Blood mercury was significantly elevated on contaminated sites (2005–2007 combined mean ± SE: 2.84 ± 0.09 μg/g; reference: 0.17 ± 0.01 μg/g). Model-averaged estimates of female apparent survival ranged from 0.483 to 0.488 on reference sites and 0.473 to 0.477 on contaminated sites. For males, apparent survival ranged from 0.451 to 0.457 on reference sites and 0.444 to 0.448 on contaminated sites. Thus, we observed approximately a 1% difference in survival between mercury-contaminated and reference sites. Such a small difference is unlikely to impact population viability in this short-lived species; however, some songbirds accumulate mercury to a greater degree than tree swallows and do not possess the migratory behavior that removes swallows to less contaminated areas for the majority of the year. Identifying whether such species are at risk of suffering biologically significant reductions in survival should become a focus of future research.


Heavy metal Mercury Survival Tachycineta bicolor Tree swallow 



We thank the South River Science Team, Alena Arkhipov, Kjärstin Carlson-Drexler, Anne Condon, Adam Duerr, Ollie Ehlinger, Rachel Fovargue, Peter Frederick, Scott Friedman, Dana Hawley, Mikaela Howie, Ravi Jefferson-George, Sean Koebley, Elizabeth Langer, Maryse Leandre, Kevin Lonabaugh, Tom Meier, Adrian Monroe, Roshan Patel, Jacob Perkinson, Adam Pflugrath, John Schmerfeld, William Secor, Haruka Wada, Ariel White and the many cooperative landowners of the Shenandoah Valley for support during this extensive field study. Funding was provided by E. I. DuPont de Nemours and Company, The Virginia Society of Ornithology, The Association of Field Ornithologists, The American Ornithologists’ Union, The Office of Vice Provost for Research at the College of William and Mary, National Science Foundation Grant UBM 0436318, and the William and Mary Undergraduate Science Education and Research Program sponsored by the Howard Hughes Medical Institute. The manuscript benefitted tremendously from the comments of two anonymous reviewers.


  1. Ackerman JT, Eagles-Smith CA, Takekawa JY, Iverson SA (2008) Survival of postfledging Forster’s terns in relation to mercury exposure in San Francisco Bay. Ecotoxicology 17:789–801. doi: 10.1007/s10646-008-0237-6 CrossRefGoogle Scholar
  2. Ardia DR (2005) Tree swallows trade off immune function and reproductive effort differently across their range. Ecology 86:2040–2046. doi: 10.1890/04-1619 CrossRefGoogle Scholar
  3. Ardia DR, Schat KA, Winkler DW (2003) Reproductive effort reduces long-term immune function in breeding tree swallows (Tachycineta bicolor). Proc R Soc B 270:1679–1683. doi: 10.1098/rspb.2003.2424 CrossRefGoogle Scholar
  4. Brasso RL, Cristol DA (2008) Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology 17:133–141. doi: 10.1007/s10646-007-0163-z CrossRefGoogle Scholar
  5. Brown MB, Brown CR (2009) Blood sampling reduces annual survival in cliff swallows (Petrochelidon pyrrhonota). Auk 126:853–861. doi: 10.1525/auk.2009.09048 CrossRefGoogle Scholar
  6. Burnham KB, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Method Res 33:261–305. doi: 10.1177/0049124104268644 CrossRefGoogle Scholar
  7. Carter LJ (1977) Chemical plants leave unexpected legacy for two Virginia rivers. Science 198:1015–1020. doi: 10.1126/science.198.4321.1015 CrossRefGoogle Scholar
  8. Condon AM, Cristol DA (2009) Feather growth influences blood mercury level of young songbirds. Environ Toxicol Chem 28:395–401. doi: 10.1897/08-094.1 CrossRefGoogle Scholar
  9. Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335. doi: 10.1126/science.1154082 CrossRefGoogle Scholar
  10. Custer CM, Custer TW, Hines JE, Nichols JD, Dummer PM (2007) Adult tree swallow (Tachycineta bicolor) survival on the polychlorinated biphenyl-contaminated Housatonic River, Massachusetts, USA. Environ Toxicol Chem 26:1056–1065. doi: 10.1897/06-337R.1 CrossRefGoogle Scholar
  11. Evers DC, Burgess NM, Champoux L, Hoskins B, Major A, Goodale WM, Taylor RJ, Poppenga R, Daigle T (2005) Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology 14:193–221. doi: 10.1007/s10646-004-6269-7 CrossRefGoogle Scholar
  12. Evers DC, Savoy LJ, DeSorbo CR, Yates DE, Hanson W, Taylor KM, Siegel LS, Cooley JH Jr, Bank MS, Major A, Munney K, Mower BF, Vogel HS, Schoch N, Pokras M, Goodale MW, Fair J (2008) Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:69–81. doi: 10.1007/s10646-007-0168-7 CrossRefGoogle Scholar
  13. Franceschini MD, Lane OP, Evers DC, Reed JM, Hoskins B, Romero LM (2009) The corticosterone stress response and mercury contamination in free-living tree swallows, Tachycineta bicolor. Ecotoxicology 18:514–521. doi: 10.1007/s10646-009-0309-2 CrossRefGoogle Scholar
  14. Friedman SL, Brasso RL, Condon AM (2008) An improved simple nest-box trap. J Field Ornithol 79:99–101. doi: 10.1111/j.1557-9263.2008.00150.x CrossRefGoogle Scholar
  15. Gerrard PM, St. Louis VL (2001) The effects of experimental reservoir creation on the bioaccumulation of MeHg and reproductive success of tree swallows (Tachycineta bicolor). Environ Sci Technol 35:1329–1338. doi: 10.1021/es001537f CrossRefGoogle Scholar
  16. Hallinger KK, Cristol DA (2010) Use of chemical tracer to detect floaters in a tree swallow (Tachycineta bicolor) population. J Environ Indic 5:7–16Google Scholar
  17. Hallinger KK, Zabransky DJ, Kazmer KA, Cristol DA (2010) Birdsong differs between mercury-polluted and reference sites. Auk 127:156–161. doi: 10.1525/auk.2009.09058 CrossRefGoogle Scholar
  18. Hawley DM, Hallinger KK, Cristol DA (2009) Compromised immune competence in free-living tree swallows exposed to mercury. Ecotoxicology 18:499–503. doi: 10.1007/s10646-009-0307-4 CrossRefGoogle Scholar
  19. Heinz G (1979) Methylmercury: reproductive and behavioral effects on three generations of mallard ducks. J Wildl Manag 43:394–401CrossRefGoogle Scholar
  20. Heinz G, Locke LN (1976) Brain lesions in mallard ducklings from parents fed methylmercury. Avian Dis 20:9–17CrossRefGoogle Scholar
  21. Hoffman D, Moore J (1979) Teratogenic effects of external egg applications of methylmercury in the mallard, Anas platyrhynchos. Teratology 20:453–462. doi: 10.1002/tera.1420200315 CrossRefGoogle Scholar
  22. Jones J (2003) Tree swallows (Tachycineta bicolor): a new model organism? Auk 120:591–599. doi: 10.1642/0004-8038(2003)120[0591:TSTBAN]2.0.CO;2 CrossRefGoogle Scholar
  23. McCarty JP (2002) Use of tree swallows in studies of environmental stress. Rev Toxicol 4:61–104Google Scholar
  24. Mengelkoch JM, Niemi GJ, Regal RR (2004) Diet of the nestling tree swallow. Condor 106:423–429. doi: 10.1650/7341 CrossRefGoogle Scholar
  25. Meyer MW, Evers DC, Hartigan JJ, Rasmussen PS (1998) Patterns of common loon (Gavia immer) mercury exposure, reproduction, and survival in Wisconsin, USA. Environ Toxicol Chem 17:184–190. doi: 10.1002/etc.5620170207 Google Scholar
  26. Mitro MG, Evers DC, Meyer MW, Piper WH (2008) Common loon survival rates and mercury in New England and Wisconsin. J Wildl Manag 72:665–673. doi: 10.2193/2006-551 CrossRefGoogle Scholar
  27. North American Bluebird Society (2009) NABS nest box specifications. Accessed 22 April 2009
  28. Rimmer CC, McFarland KP, Evers DC, Miller EK, Aubry Y, Busby D, Taylor RJ (2005) Mercury levels in Bicknell’s thrush and other insectivorous passerine birds in montane forests of the northeastern United States and Canada. Ecotoxicology 14:223–240. doi: 10.1007/s10646-004-6270-1 CrossRefGoogle Scholar
  29. Robertson RJ, Stutchbury BJ, Cohen RR (1992) Tree swallow (Tachycineta bicolor). In Poole A, Stettenheim P, Gill F (eds), The Birds of North America, No. 11. The Academy of Natural Sciences, Philadelphia, PA, and the American Ornithologists’ Union, Washington, DC. doi: 10.2173/bna.11
  30. Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–19. doi: 10.1579/0044-7447(2007)36[12:EOEMOT]2.0.CO;2 CrossRefGoogle Scholar
  31. Seewagen CL (2010) Threats of environmental mercury to birds: knowledge gaps and priorities for future research. Bird Conserv Int 20:112–123. doi: 10.1017/S095927090999030X CrossRefGoogle Scholar
  32. Shriver WG, Evers DC, Hodgman TP, MacCulloch BJ, Taylor RJ (2006) Mercury in sharp-tailed sparrows breeding in coastal wetlands. Environ Bioindic 1:129–135. doi: 10.1080/15555270600695734 CrossRefGoogle Scholar
  33. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  34. Stutchbury BJ, Robertson RJ (1986) A simple trap for catching birds in nest boxes. J Field Ornithol 57:64–65Google Scholar
  35. Stutchbury BJM, Hill JR III, Kramer PM, Rush SA, Tarof SA (2009) Sex and age-specific annual survival in a Neotropical migratory songbird, the purple martin (Progne subis). Auk 126:278–287. doi: 10.1525/auk.2009.08038 CrossRefGoogle Scholar
  36. Thompson DR, Hamer KC, Furness RW (1991) Mercury accumulation in great skuas Catharacta skua of known age and sex, and its effects upon breeding and survival. J Appl Ecol 28:672–684CrossRefGoogle Scholar
  37. United Nations Environment Programme (UNEP) (2002) Global Mercury Assessment. United Nations Environment Programme Chemicals, Geneva, SwitzerlandGoogle Scholar
  38. Wada H, Cristol DA, McNabb FMA, Hopkins WA (2009) Suppressed adrenocortical responses and thyroid hormone levels in birds near a mercury-contaminated river. Environ Sci Technol 43:6031–6038. doi: 10.1021/es803707f CrossRefGoogle Scholar
  39. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46 Supplement:120-138. doi: 10.1080/00063659909477239
  40. Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2003) Ecotoxicology of mercury. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) Handbook of ecotoxicology, 2nd edn. Lewis Publishers, Boca Raton, FL, pp 409–463Google Scholar
  41. Winkler DW, Wrege PH, Allen PE, Kast TL, Senesac P, Wasson MF, Llambías PE, Ferretti V, Sullivan PJ (2004) Breeding dispersal and philopatry in the tree swallow. Condor 106:768–776. doi: 10.1650/7634 CrossRefGoogle Scholar
  42. Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160. doi: 10.1002/etc.5620170203 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Kelly K. Hallinger
    • 1
    Email author
  • Kerri L. Cornell
    • 1
  • Rebecka L. Brasso
    • 1
  • Daniel A. Cristol
    • 1
  1. 1.Department of BiologyInstitute for Integrative Bird Behavior Studies, College of William & MaryWilliamsburgUSA

Personalised recommendations