, Volume 19, Issue 6, pp 1095–1101 | Cite as

A study of the effects of chromium exposure on the growth of Pseudokirchneriella subcapitata (Korshikov) hindak evaluated by Central Composite Design and Response Surface Methodology

  • Patrícia C. Giloni-LimaEmail author
  • Danieli Delello
  • Marcelo L. M. Cremonez
  • Márcia N. Éler
  • Vanderlei A. Lima
  • Evaldo L. G. Espíndola


The aim of this study was to evaluate the effects of chromium exposure on the growth of P. subcapitata using the Central Composite Design (CCD) and Response Surface Methodology (RSM). The highest values for algal density and biomass were obtained in the longest exposure times and for the lowest chromium concentrations. The CCD used for the analysis of treatment combinations showed that a second order polynomial regression model was in good agreement with experimental results, with R 2 = 81.50 and 89.90; for algal density and biomass (p < 0.05), respectively. Only the exposure time was significant for algal density. For chlorophyll, in contrast, the exposure time, chromium concentration and their interaction significantly affected the growth of P. subcapitata. The findings confirmed the sensitivity of P. subcapitata to chromium (VI), which makes it a suitable bioindicator of environmental contamination for this metal.


Metal Algae Selenastrum capricornutum RSM CCD Toxicity 



We are grateful for the financial support from the São Carlos Engineering School, the Water Resources and Applied Ecology Center, and the University of São Paulo, and for the assistance from the University State of West Center. We wish to thank Dr. Liane Biehl Printes for the valuable comments and suggestions on the manuscript.


  1. AFNOR (1980) Norme experimentale T90-304. Essais deseaux Determination de I′inhibition de Scenedesmus subspicatus par une substanceGoogle Scholar
  2. Associação Brasileira de Normas e Técnicas (ABNT) (2005) Ecotoxicologia aquática–toxicidade crônica–Método de ensaio com algas (Chlorophyceae) NBR12468. Rio de Janeiro, Brazil, 27 ppGoogle Scholar
  3. Bayraktar E (2001) Response surface optimization of the separation of dl-tryptophan using an emulsion liquid membrane. Process Biochem 37:169–175CrossRefGoogle Scholar
  4. Chapman PF, Crane M, Wiles J, Noppert F, McIndoe E (1996) Improving the quality of statistics in regulatory ecotoxicity tests. Ecotoxicology 5:169–186CrossRefGoogle Scholar
  5. Chaudhury I, Panda SK (2005) Toxic effects oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) broth under chromium and lead phytotoxicity. Water Air Soil Pollut 167:73–90CrossRefGoogle Scholar
  6. Corradi MG, Gorbi C, Abde M, Torelli A, Bassi M (1998) Exudates from the wild type and Cr-tolerant strain of Scenedesmus acutus influence differently Cr (VI) toxicity to algae. Chemosphere 37:3019–3025CrossRefGoogle Scholar
  7. Cvetkovic AD, Samson G, Couture P, Popovic R (1991) Study of dependency between culture growth and photosynthetic efficiency measured by fluorescence induction in Selenastrum capricornutum inhibited by copper. Ecotox Environ Saf 22:127–132CrossRefGoogle Scholar
  8. De Schamphelaere KAC, Vasconcelos FM, Heijerick DG, Tack FMG, Delbeke K, Allen HE, Janssen CR (2003) Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata. Environ Toxicol Chem 22:2454–2465CrossRefGoogle Scholar
  9. Faller D, Klingmüller U, Timmer J (2003) Simulation methods for optimal experimental design in systems biology. Simulation 79:717–725CrossRefGoogle Scholar
  10. Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contamination in aquatic ecosystems. Sci Total Environ 317:207–233CrossRefGoogle Scholar
  11. Furlanetto S, Orlandini S, Mura P, Sergent M, Pinzauti S (2003) How experimental design can improve the validation process. Studies in pharmaceutical analysis. Anal Bioanal Chem 377:937–944CrossRefGoogle Scholar
  12. Gorbi G, Corradi MG, Invidia M, Bassi M (2001) Light influences chromium bioaccumulation and toxicity in Scenedesmus acutus (Chlorophyceae). Ecotox Environ Saf 48:36–42CrossRefGoogle Scholar
  13. Hamilton MA, Russo RC, Thurston RV (1977) Trimmed Spearman-Karber method for estimating median lethal concentration in toxicity bioassays. Environ Sci Technol 11:714–719CrossRefGoogle Scholar
  14. Heijerick DG, Janssen CR, De Coen WM (2003) The combined of hardness, pH and dissolved organic carbon on the chronic toxicity of Zn to D. magna: development of a surface response model. Arch Environ Contam Toxicol 44:210–217CrossRefGoogle Scholar
  15. Janssen CR, Heijerick DG (2003) Algal toxicity tests for environmental risk assessments of metals. Rev Environ Contam Toxicol 178:23–52CrossRefGoogle Scholar
  16. Labra M, Bernasconi M, Grassi F, Mattia FD, Sgorbati S, Airoldi R, Citterio S (2007) Toxic and genotoxic effects of potassium dichromate in Pseudokirchneriella subcapitata detected by microscopy and AFLP marker analysis. Aquat Bot 86:229–235CrossRefGoogle Scholar
  17. Lewis MA (1995) Algae and vascular plant tests. In: Rand GM (ed) Fundamentals of aquatic toxicology: effects, environment fate, and risk assessment, 2nd edn. Taylor & Francis, Washington, pp 135–169Google Scholar
  18. Maršálek B, Rojíčková R (1996) Stress factors enhancing production of algal exudates: a potential selfprotective mechanism? Z Naturförsch 51:646–650Google Scholar
  19. Masutti MB (2004) Distribuição e efeitos de cromo e cobre em ecossistemas aquáticos: uma análise laboratorial e “in situ” (experimentos em micro e mesocosmos). São Carlos. 390 p. Thesis (Doctorado), Escola de Engenharia de São Carlos, Universidade de São PauloGoogle Scholar
  20. Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigment determination. Arch für Hydrobiol 14:14–36Google Scholar
  21. Panda SK (2003) Heavy metal phytotoxicity induces oxidative stress in Taxithelium sp. Curr Sci 84:631–633Google Scholar
  22. Panda SK, Choudhury I (2005) Changes in nitrate reductase (NR) activity and oxidative stress in moss Polytrichum commune subjected to chromium, copper and zinc toxicity. Braz J Plant Physiol 17:191–197Google Scholar
  23. Panda SK, Chaudhury I, Khan MH (2003) Heavy metals induced lipid peroxidation and effects antioxidants in wheat leaves. Biol Plant 46:289–294CrossRefGoogle Scholar
  24. Pardos M, Benninghoff C, Thomas RL (1998) Photosynthetic population growth response of the test alga Selenastrum capricornutum Printz to zinc, cadmium and suspended sediment elutriates. J Appl Phycol 10:145–151CrossRefGoogle Scholar
  25. Pereira MJ, Resende P, Azeiteiro UM, Oliveira J, Figueiredo DR (2005) Differences in the effects of metals on growth of two freshwater green algae [Pseudokirchneriella subcapitata (Korshikov) Hindak and Gonium pectorale Müller]. Bull Envrion Contam Toxicol 75:515–522CrossRefGoogle Scholar
  26. Qiao D, Hu B, Gan D, Sun Y, Ye H, Zeng X (2009) Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from hyriopsis cumingii. Carbohydr Polym 76:422–429CrossRefGoogle Scholar
  27. Rodgher S, Espíndola ELG (2008) Effects of interactions between algal densities and cadmium concentrations on Ceriodaphnia dubia fecundity and survival. Ecotox Exp Saf 71:765–773CrossRefGoogle Scholar
  28. Rodgher S, Lombardi AT, Melao MGG, Tonietto AT (2008) Change in life cycle parameters and feeding rate of Ceriodaphnia silvestrii Daday (Crustacea, Cladocera) exposure to dietary copper. Ecotoxicology 17:823–833CrossRefGoogle Scholar
  29. Rojíčková R, Maršálek B (1999) Selection and sensitivity comparisons of algal species for toxicity testing. Chemosphere 38:3329–3338CrossRefGoogle Scholar
  30. Turbak SC, Olson SB, Mcfeters GA (1986) Comparison of algal assays systems for detecting waterborne herbicides and metals. Water Res 20:91–96CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Patrícia C. Giloni-Lima
    • 1
    Email author
  • Danieli Delello
    • 1
  • Marcelo L. M. Cremonez
    • 1
  • Márcia N. Éler
    • 1
  • Vanderlei A. Lima
    • 2
  • Evaldo L. G. Espíndola
    • 1
  1. 1.Ecophysiology Laboratory for Aquatic Organisms, Research Center on Water Resources and Applied Ecology, Engineering School of São CarlosUniversity of São PauloSão CarlosBrazil
  2. 2.Chemical Engineering DepartmentSão Carlos Federal UniversitySão CarlosBrazil

Personalised recommendations