, Volume 19, Issue 6, pp 1066–1073 | Cite as

Cadmium accumulation, metallothionein and glutathione levels, and histopathological changes in the kidneys and liver of magpie (Pica pica) from a zinc smelter area

  • Tadeusz WłostowskiEmail author
  • Krzysztof Dmowski
  • Elżbieta Bonda-Ostaszewska


The objective of this study was to examine a relationship between cadmium (Cd) accumulation and histopathological changes in the kidneys and liver of magpies (Pica pica) from a zinc smelter area. The concentrations of metallothionein (MT) and glutathione (GSH) that are linked to a protective effect against Cd toxicity were also determined. There was a positive correlation between the concentration of Cd (2.2–17.9 μg/g) and histopathological changes (interstitial inflammation and tubular cell degeneration) in the kidneys (R s = 0.87, P = 0.0000). The renal Cd also positively correlated with apoptosis (R s = 0.72, P = 0.0005) but the metal did not affect lipid peroxidation. Notably, the average concentration of Cd in the kidneys exceeded MT capacity by about 7 μg/g which is thought to produce renal injury. Importantly, GSH level in the kidneys of magpies from the polluted area dropped to 38% of that observed in the reference birds, probably potentiating Cd toxicity. On the contrary, the liver accumulation of Cd was relatively small (0.88–3.38 μg/g), the hepatic MT capacity exceeded the total concentration of Cd and no association between the hepatic Cd and histopathology was found despite the fact that GSH level was only half that observed in the reference birds. The data suggest that Cd intoxication may be responsible for histopathological changes occurring in the kidneys of free-ranging magpies and that the pathology may be associated with inappropriate amount of renal MT and GSH.


Cadmium Metallothionein Glutathione Nephrotoxicity Apoptosis Magpie 


  1. Almazan G, Liu HN, Khorchid A, Sundararajan S, Martinez-Bermudez AK, Chemtob S (2000) Exposure of developing oligodendrocytes to cadmium causes HSP72 induction, free radical generation, reduction in glutathione levels, and cell death. Free Radic Biol Med 29:858–869. doi: 10.1016/S0891-5849(00)00384-1 CrossRefGoogle Scholar
  2. Beiglbock C, Steineck T, Tataruch F, Ruf T (2002) Environmental cadmium induces histopathological changes in kidneys of roe deer. Environ Toxicol Chem 21:1811–1816CrossRefGoogle Scholar
  3. Birkhead TR, Clarkson K, Reynolds MD, Koenig WD (1992) Copulation and mate guarding in the yellow-billed magpie Pica nuttalli and a comparison with the black-billed magpie P. pica. Behaviour 121:110–130CrossRefGoogle Scholar
  4. Cannino G, Ferrugia E, Luparello C, Rinaldi AM (2009) Cadmium and mitochondria. Mitochondrion 9:377–384. doi: 10.1016/j.mito.2009.08.009 CrossRefGoogle Scholar
  5. Chan HM, Cherian MG (1992) Protective roles of metallothionein and glutathione in hepatotoxicity of cadmium. Toxicology 72:281–290. doi: 10.1016/0300-483X(92)90179-I CrossRefGoogle Scholar
  6. Congiu L, Chicca M, Pilastro A, Turchetto M, Tallandini L (2000) Effects of chronic dietary cadmium on hepatic glutathione levels and glutathione peroxidase activity in starlings (Sturnus vulgaris). Arch Environ Contam Toxicol 38:357–361. doi: 10.1007/S002449910047 CrossRefGoogle Scholar
  7. Damek-Poprawa M, Sawicka-Kapusta K (2003) Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland. Toxicology 186:1–10. doi: 10.1016/S0300-483X(02)00595-4 CrossRefGoogle Scholar
  8. Damek-Poprawa M, Sawicka-Kapusta K (2004) Histopathological changes in the liver, kidney, and testes of bank voles environmentally exposed to heavy metal emissions from the steelworks and zinc smelter in Poland. Environ Res 96:72–78. doi: 10.1016/j.envres.2004.02.003 CrossRefGoogle Scholar
  9. Day FA, Panemangalore M, Brady FD (1981) In vivo and ex vivo effects of copper on rat liver metallothionein. Proc Soc Exp Biol Med 168:306–310Google Scholar
  10. Dmowski K (1997) Biomonitoring with the use of magpie Pica pica feathers: heavy metal pollution in the vicinity of zinc smelters and national parks in Poland. Acta Ornithol 32:15–23Google Scholar
  11. Elliott JE, Scheuhammer AM, Leighton FA, Pearce PA (1992) Heavy metal and metallothionein concentrations in Atlantic Canadian seabirds. Arch Environ Contam Toxicol 22:63–73CrossRefGoogle Scholar
  12. Goering PL, Waalkes MP, Klaassen CD (1995) Toxicology of cadmium. In: Goyer RA, Cherian MG (eds) Toxicology of metals: biochemical aspects. Springer, New York, pp 189–213Google Scholar
  13. Goyer RA, Miller CR, Zhu S-Y, Victery W (1989) Non-metallothionein-bound cadmium in the pathogenesis of cadmium nephrotoxicity in the rat. Toxicol Appl Pharmacol 101:232–244. doi: 10.1016/0041-008X(89)90272-X CrossRefGoogle Scholar
  14. Groten JP, Koeman JH, van-Nesselrooij JH, Luten JB, Feutener-van Vlissingen JM, Steinhuis WS, van Bladeren PJ (1994) Comparison of renal toxicity after long-term oral administration of cadmium chloride and cadmium-metallothionein in rats. Fundam Appl Toxicol 23:544–552. doi: 10.1006/foat.1994.1139 CrossRefGoogle Scholar
  15. Habeebu SS, Liu J, Liu Y, Klaassen CD (2000) Metallothionein-null mice are more sensitive than wild-type mice to liver injury induced by repeated exposure to cadmium. Toxicol Sci 55:223–232CrossRefGoogle Scholar
  16. Kang YJ, Euger MD (1987) Effect of cellular glutathione depletion on cadmium-induced cytotoxicity in human lung carcinoma cells. Cell Biol Toxicol 3:347–360CrossRefGoogle Scholar
  17. Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294. doi: 10.1146/annurev.pharmtox.39.1.267 CrossRefGoogle Scholar
  18. Larison JR, Likens GE, Fitzpatrick JW, Crock JG (2000) Cadmium toxicity among wildlife in the Colorado Rocky Mountains. Nature 406:181–183. doi: 10.1038/35018068 CrossRefGoogle Scholar
  19. Leffler PE, Nyholm NE (1996) Nephrotoxic effects in free-living bank voles in a heavy metal polluted environment. Ambio 6:417–420Google Scholar
  20. Lehman LD, Klaassen CD (1986) Dosage-dependent disposition of cadmium administered orally to rats. Toxicol Appl Pharmacol 84:159–167CrossRefGoogle Scholar
  21. Liu J, Habeebu SS, Liu Y, Klaassen CD (1998a) Acute CdMT injection is not a good model to study chronic Cd nephropathy: comparison of chronic CdCl2 and CdMT exposure with acute CdMT injection in rats. Toxicol Appl Pharmacol 153:48–58. doi: 10.1006/taap.1998.8506 CrossRefGoogle Scholar
  22. Liu J, Liu Y, Habeebu SS, Klaassen CD (1998b) Susceptibility of MT-null mice to chronic CdCl2-induced nephrotoxicity indicates that renal injury is not mediated by the CdMT complex. Toxicol Sci 46:197–203. doi: 10.1006/toxs.1998.2541 Google Scholar
  23. Maracine M, Segner H (1998) Cytotoxicity of metals in isolated fish cells: importance of the cellular glutathione status. Comp Biochem Physiol A 120:83–88. doi: 10.1016/S1095-6433(98)10013-2 CrossRefGoogle Scholar
  24. Miranda CL, Henderson MC, Reed RL, Schmitz JA, Buhler DR (1982) Protective action of zinc against pyrrolizidine alkaloid-induced hepatotoxicity in rats. J Toxicol Environ Health 9:359–366CrossRefGoogle Scholar
  25. Nicholson JK, Kendall MD, Osborn D (1983) Cadmium and mercury nephrotoxicity. Nature 304:633–635CrossRefGoogle Scholar
  26. Nigam D, Shukla GS, Agarwal AK (1999) Glutathione depletion and oxidative damage in mitochondria following exposure to cadmium in rat liver and kidney. Toxicol Lett 106:151–157. doi: 10.1016/S0378-4274(99)00059-4 CrossRefGoogle Scholar
  27. Nomiyama K, Nomiyama H (1998) Cadmium-induced renal dysfunction: new mechanism, treatment and prevention. J Trace Elem Exp Med 11:275–288. doi: 10.1002/(SICI)1520-670X(1998)11:2/3<275:AID-JTRA16>3.0.C0;2-0 CrossRefGoogle Scholar
  28. Nordberg M, Nordberg GF (2000) Toxicological aspects of metallothionein. Cell Mol Biol 46:451–463Google Scholar
  29. Nzengue Y, Steiman R, Garrel C, Lefebvre E, Guirand P (2008) Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium. Toxicology 243:193–206. doi: 1016/j.tox.2007.10.005 CrossRefGoogle Scholar
  30. Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  31. Pereira R, Pereira ML, Riberio R, Goncalves F (2006) Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal). Environ Pollut 139:561–575. doi: 10.1016/j.envpol.2005.04.038 CrossRefGoogle Scholar
  32. Pulido MD, Parrish AR (2003) Metal-induced apoptosis: mechanisms. Mut Res 533:227–241. doi: 10.1016/j.mrfmmm.2003.07.015 Google Scholar
  33. Qu W, Diwan BA, Liu J, Goyer RA, Dawson T, Horton JL, Cherian MG, Waalkes MP (2002) The metallothionein-null phenotype is associated with heightened sensitivity to lead toxicity and an inability to form inclusion bodies. Am J Pathol 160:1047–1056Google Scholar
  34. Rush GH, Gorski JR, Ripple MG, Sowinski J, Bugelski P, Hewitt WR (1985) Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol Appl Pharmacol 78:473–483CrossRefGoogle Scholar
  35. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PEB, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83. doi: 10.1016/S0378-4274(02)00381-8 CrossRefGoogle Scholar
  36. Shaikh ZA, Vu TT, Zaman K (1999) Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol 154:253–256. doi: 10.1006/taap.1998.8586 CrossRefGoogle Scholar
  37. Singhal RK, Anderson ME, Meister A (1987) Glutathione, a first line of defense against cadmium toxicity. FASEB J 1:220–223Google Scholar
  38. Sogawa N, Onodera K, Sogawa CA, Mukubo Y, Fukuoka H, Oda N, Fusuta H (2001) Bisphenol A enhances cadmium toxicity through estrogen receptor. Meth Find Exp Clin Pharmacol 23:395–399CrossRefGoogle Scholar
  39. Stacey NH, Cantilena LR, Klaassen CD (1980) Cadmium toxicity and lipid peroxidation in isolated rat hepatocytes. Toxicol Appl Pharmacol 53:470–480CrossRefGoogle Scholar
  40. Tanimoto A, Hamada T, Koide O (1993) Cell death and regeneration of renal proximal tubular cells in rat with subchronic cadmium intoxication. Toxicol Pathol 21:341–352CrossRefGoogle Scholar
  41. Thevenod F, Friedmann JM (1999) Cadmium-mediated oxidative stress in kidney proximal tubule cell induced degradation of Na+/K+-ATPase through proteosomal and endo-lysosomal proteolytic pathways. FASEB J 13:1751–1761Google Scholar
  42. Tietze F (1969) Enzymatic method for the quantitative determination of nanogram amounts of total and oxidized glutathione: application to mammalian blood and other tissue. Anal Biochem 27:502–522CrossRefGoogle Scholar
  43. van den Hurk P, Faisal M, Roberts MH (2000) Interactive effects of cadmium and benzo(a)pyrene on metallothionein induction in mummichog (Fundulus heteroclitus). Mar Environ Res 50:83–87. doi: 10.1016/S0141-1136(00)00098-2 CrossRefGoogle Scholar
  44. Vanparys C, Dauwe T, van Campenhout K, Bervoets L, de Coen W, Blust R, Eens M (2008) Metallothioneins (MTs) and δ-aminolevulinic acid dehydratase (ALAd) as biomarkers of metal pollution in great tits (Parus major) along a pollution gradient. Sci Tot Environ 401:184–193. doi: 10.1016/j.scitotenv.2008.04.009 CrossRefGoogle Scholar
  45. Voehringer DW (1999) BCL-2 and glutathione: alterations in cellular redox state that regulate apoptosis sensitivity. Free Radic Biol Med 27:945–950. doi: 10.1016/S0891-5849(99)00174-4 CrossRefGoogle Scholar
  46. Wang L, Cao J, Chen D, Liu X, Lu H, Liu Z (2009) Role of oxidative stress, apoptosis, and intracellular homeostasis in primary cultures of rat proximal tubular cells exposed to cadmium. Biol Trace Elem Res 127:53–68. doi: 10.1007/S12011-008-8223-7 CrossRefGoogle Scholar
  47. Włostowski T, Krasowska A, Łaszkiewicz-Tiszczenko B (2000) Dietary cadmium induces histopathological changes despite a sufficient metallothionein level in liver and kidneys of the bank vole (Clethrionomys glareolus). Comp Biochem Physiol C 126:21–28. doi: 10.1016/S0742-8413(00)00089-X Google Scholar
  48. Włostowski T, Bonda E, Krasowska A (2004) Photoperiod affects hepatic and renal cadmium accumulation, metallothionein induction, and cadmium toxicity in the wild bank vole (Clethrionomys glareolus). Ecotoxicol Environ Saf 58:29–36. doi: 10.1016/S0147-6513(03)00109-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tadeusz Włostowski
    • 1
    Email author
  • Krzysztof Dmowski
    • 2
  • Elżbieta Bonda-Ostaszewska
    • 1
  1. 1.Institute of BiologyUniversity of BiałystokBiałystokPoland
  2. 2.Department of EcologyUniversity of WarsawWarsawPoland

Personalised recommendations