Advertisement

Ecotoxicology

, Volume 19, Issue 5, pp 917–927 | Cite as

Toxicity of abamectin to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea)

  • Lucija Kolar
  • Anita Jemec
  • Cornelis A. M. van Gestel
  • Janez Valant
  • Rok Hrženjak
  • Nevenka Kožuh Eržen
  • Primož Zidar
Article

Abstract

To determine effects of the antiparasitic veterinary drug abamectin on the isopod Porcellio scaber, animals were exposed for 21 days to Lufa 2.2 soil spiked at concentrations of 3–300 mg/kg dry soil. After exposure, abamectin residues in the isopods were analysed using a novel analytical method. Toxicity was evaluated on different levels of biological organisation: biochemical, cellular and the individual organism. Measurements included glutathione S-transferase (GST) activity and stability of cell membranes in the digestive gland, animal mass gain or loss, food consumption, behaviour and mortality. LC50 for the effect of abamectin on survival of P. scaber was 71 mg/kg dry soil. The most obvious sublethal effects were reduced food consumption and decreased body mass (NOEC 3 mg/kg dry soil). Additionally, loss of digging activity and reduced GST activity (NOEC 30 mg/kg dry soil) and cell membrane destabilization (NOEC 10 mg/kg dry soil) were recorded. Abamectin only slightly accumulated in the isopods, with bioaccumulation factors always being <0.1. Based on these results and current information on environmental levels of abamectin, it is not likely that isopods will be affected by abamectin, but further studies with exposure through faeces are recommended.

Keywords

Avermectins Biomarker Multi-level approach Soil invertebrates 

References

  1. Abele D, Burlando B, Viarengo A, Pörtner HO (1998) Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antartic intertidal limpet Nacella concinna. Comp Biochem Physiol B 120:425–435CrossRefGoogle Scholar
  2. Adams HR (2001) Veterinary pharmacology and therapeutics. Iowa State University Press, Ames, Iowa, USAGoogle Scholar
  3. Adams SM (2002) Biological indicators of aquatic ecosystem stress. American Fisheries Society. Bethesda, Maryland, USAGoogle Scholar
  4. Clark AG, Smith JN, Speir TW (1973) Cross specificity in some vertebrate and insect glutathione S-transferases with methyl parathion (dimethyl p-nitrophenyl phosphorothionate), 1-chloro-2, 4-dinitrobenzene and S-crotonyl-N-acetylcysteamine as substrates. Biochem J 135:385–592Google Scholar
  5. De Montigny P, Shim JSK, Pivnichny JV (1990) Liquid chromatographic determination of ivermectin in animal plasma with trifluoroacetic anhydride and N-methylimidazole as the derivatization reagent. J Pharm Biomed Anal 8:507–511CrossRefGoogle Scholar
  6. Diao X, Jensen J, Hansen AD (2007) Toxicity of the anthelmintic abamectin to four species of soil invertebrates. Environ Pollut 148:514–519CrossRefGoogle Scholar
  7. Ding J, Drewes CD, Hsu WH (2001) Behavioural effects of ivermectin in a freshwater oligocheate, Lumbriculus variegates. Environ Toxicol Chem 20:1584–1590Google Scholar
  8. Drobne D (1997) Terrestrial isopods—a good choice for toxicity testing of pollutants in the terrestrial environment. Environ Toxicol Chem 16:1159–1164Google Scholar
  9. Drobne D, Blažic M, Van Gestel CAM, Lešer V, Zidar P, Jemec A, Trebše P (2008) Toxicity of imidacloprid to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea). Chemosphere 71:1326–1334CrossRefGoogle Scholar
  10. Drobne D, Jemec A, Pipan-Tkalec Ž (2009) In vivo screening to determine hazards of nanoparticles: nanosized TiO2. Environ Pollut 157:1157–1164CrossRefGoogle Scholar
  11. EFSA (European food safety authority) (2008) Peer review report on abamectin. Efsa Scientific report. Available online: http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1211902028558.htm. Accessed 27 Nov 2009
  12. Hagedorn M, Ziegler A (2002) Analysis of Ca2+ uptake into the smooth endoplasmic reticulum of permeabilized sternal epithelial cells during the molting cycle of the terrestrial isopod Porcellio scaber. J Exp Biol 205:1935–1942Google Scholar
  13. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, New YorkGoogle Scholar
  14. Hamilton MA, Russo RC, Thurston RV (1977/1978) Trimmed Spearman-Karber method for estimating lethal concentrations in toxicity bioassays. Environ Sci Technol 11:714–719 (Correction: Environ Sci Technol (1978) 12:417)Google Scholar
  15. Hoarau P, Gnassia-Barelli M, Romeo M, Girard JP (2001) Differential induction of Glutathione S-transferases in the clam Ruditapes Decussatus exposed to organic compounds. Environ Toxicol Chem 20:523–529Google Scholar
  16. Hornung E, Farkas S, Fischer E (1998) Tests on the isopod Porcellio scaber. In: Løkke H, Van Gestel CAM (eds) Handbook of soil invertebrate toxicity tests, 1st edn. Wiley, Chichester, pp 207–226Google Scholar
  17. Jemec A, Tišler T, Drobne D, Sepčić K, Fournier D, Trebše P (2007) Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere 68:1408–1418CrossRefGoogle Scholar
  18. Jemec A, Drobne D, Tišler T, Sepčić K, Jamnik P, Roš M (2008) Biochemical biomarkers in chronically metal-stressed daphnids. Comp Biochem Phys C 147:61–68Google Scholar
  19. Jensen J, Diao X, Scott-Fordsmand JJ (2007) Sub-lethal toxicity of the antiparasitic abamectin on earthworms and the application of neutral red retention time as a biomarker. Chemosphere 68:744–750CrossRefGoogle Scholar
  20. Kolar L, Kužner J, Kožuh Eržen N (2004) Determination of abamectin and doramectin in sheep faeces using HPLC with fluorescence detection. Biomed Chromatogr 18:117–124CrossRefGoogle Scholar
  21. Kolar L, Kožuh Eržen N, Hogerwerf L, van Gestel CAM (2008) Toxicity of abamectin and doramectin to soil invertebrates. Environ Pollut 151:182–189CrossRefGoogle Scholar
  22. Kövecses J, Marcogliese DJ (2005) Avermectins: potential environmental risks and impacts on freshwater ecosystems in Quebec. Scientific and technical report ST-233E. Environment Canada, Quebec region, environmental conservation, St. Lawrence Centre, 72 ppGoogle Scholar
  23. Kožuh Eržen N, Kolar L, Kužner J, Cerkvenik Flajs V, Marc I, Pogačnik M (2005) Degradation of abamectin and doramectin on sheep grazed pastures. Ecotoxicology 14:627–635CrossRefGoogle Scholar
  24. Lavy D, Nedved O, Verhoef HA (1997) Effects of starvation on body composition and cold tolerance in the collembolan Orchesella cincta and the isopod Porcellio scaber. J Insect Physiol 43:973–978CrossRefGoogle Scholar
  25. Loureiro S, Sampaio A, Brandão A, Nogueira AJ, Soares AM (2006) Feeding behaviour of the terrestrial isopod Porcellionides pruinosus Brandt, 1833 (Crustacea, Isopoda) in response to changes in food quality and contamination. Sci Total Environ 369:119–128CrossRefGoogle Scholar
  26. McGahon AJ, Martin SJ, Bissonnette RP, Mahboubi A, Shi Y, Mogil RJ, Nishioka WK, Green DR (1995) The end of the (cell) line: methods for the study of apoptosis. Methods Cell Biol 46:153–185CrossRefGoogle Scholar
  27. Ribeiro S, Sousa JP, Nogueira AJA, Soares AMVM (2001) Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus. Ecotoxicol Environ Saf 49:131–138CrossRefGoogle Scholar
  28. Shen J, Zhang Q, Ding S, Zhang S, Coats JR (2005) Bioconcentration and elimination of avermectin B1 in sturgeon. Environ Toxicol Chem 24:396–399CrossRefGoogle Scholar
  29. Siqueira HAA, Guedes RNC, Fragoso DB, Magalhaes LC (2001) Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int J Pest Manag 47:247–251CrossRefGoogle Scholar
  30. Sousa JP, Loureiro S, Pieper S, Frost M, Kratz W, Nogueira AJA, Soares AM (2000) Soil and plant diet exposure routes and toxicokinetics of lindane in terrestrial isopods. Environ Toxicol Chem 10:2557–2563CrossRefGoogle Scholar
  31. Stanek K, Drobne D, Trebše P (2006) Linkage of biomarkers along levels of biological complexity in juvenile and adult diazinon fed terrestrial isopod (Porcellio scaber, Isopoda, Crustacea). Chemosphere 64:1745–1752CrossRefGoogle Scholar
  32. Stumpf N, Nauen R (2002) Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari- Tetranychidae). Pestic Biochem Physiol 72:111–121CrossRefGoogle Scholar
  33. Sun Y, Diao X, Zhang Q, Shen J (2005) Bioaccumulation and elimination of avermectin B1a in the earthworms (Eisenia foetida). Chemosphere 60:699–704CrossRefGoogle Scholar
  34. Thain JE, Davies IM, Rae GH, Allen YT (1997) Acute toxicity of ivermectin to the lugworm, Arenicola marina. Aquaculture 159:47–52CrossRefGoogle Scholar
  35. Valant J, Drobne D, Sepčić K, Jemec A, Kogej K, Kostanjšek R (2009) Hazardous potential of manufactured nanoparticles identified by in vivo assay. J Hazard Mater 171:160–165CrossRefGoogle Scholar
  36. Van Brummelen TC, Stuijfzand SC (1993) Effects of benzo[a]pyrene on survival, growth and energy reserves in the terrestrial isopods Oniscus asellus and Porcellio scaber. Sci Total Environ Suppl 1993:921–930CrossRefGoogle Scholar
  37. Van Brummelen TC, Verweij RA, Wedsinga SA, van Gestel CAM (1996) Polycyclic aromatic hydrocarbons in earthworms and isopods from contaminated forest soils. Chemosphere 32:315–341CrossRefGoogle Scholar
  38. Walker CH, Hopkin SP, Sibly RM, Peakall DB (2001) Principles of ecotoxicology. Taylor and Francis, LondonGoogle Scholar
  39. Wang L, Wu Y (2007) Cross-resistance and biochemical mechanisms of abamectin resistance in the B-type Bemisia tabaci. J Appl Entomol 131:98–103CrossRefGoogle Scholar
  40. Wislocki PG, Grosso LS, Dybas RA (1989) Environmental aspects of abamectin: use in crop protection. In: Campbell WC (ed) Ivermectin and abamectin, 1st edn. Springer, New York, pp 182–200Google Scholar
  41. Zidar P, Drobne D, Štrus J, Van Gestel CAM, Donker M (2004) Food selection as a means of Cu intake reduction in the terrestrial isopod Porcellio scaber (Crustacea, Isopoda). Appl Soil Ecol 25:257–265CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lucija Kolar
    • 1
  • Anita Jemec
    • 2
  • Cornelis A. M. van Gestel
    • 3
  • Janez Valant
    • 4
  • Rok Hrženjak
    • 1
  • Nevenka Kožuh Eržen
    • 1
  • Primož Zidar
    • 4
  1. 1.Veterinary Faculty, Forensic and Administrative Veterinary Medicine, Institute of PathologyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.National Institute of ChemistryLjubljanaSlovenia
  3. 3.Institute of Ecological ScienceVU UniversityAmsterdamThe Netherlands
  4. 4.Biotechnical Faculty, Department of BiologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations