, Volume 19, Issue 3, pp 449–462 | Cite as

Impact of near-future ocean acidification on echinoderms

  • S. DupontEmail author
  • O. Ortega-Martínez
  • M. Thorndyke


As a consequence of increasing atmospheric CO2, the world’s oceans are warming and slowly becoming more acidic (ocean acidification, OA) and profound changes in marine ecosystems are certain. Calcification is one of the primary targets for studies of the impact of CO2-driven climate change in the oceans and one of the key marine groups most likely to be impacted by predicted climate change events are the echinoderms. Echinoderms are a vital component of the marine environment with representatives in virtually every ecosystem, where they are often keystone ecosystem engineers. This paper reviews and analyses what is known about the impact of near-future ocean acidification on echinoderms. A global analysis of the literature reveals that echinoderms are surprisingly robust to OA and that important differences in sensitivity to OA are observed between populations and species. However, this is modulated by parameters such as (1) exposure time with rare longer term experiments revealing negative impacts that are hidden in short or midterm ones; (2) bottlenecks in physiological processes and life-cycle such as stage-specific developmental phenomena that may drive the whole species responses; (3) ecological feedback transforming small scale sub lethal effects into important negative effects on fitness. We hypothesize that populations/species naturally exposed to variable environmental pH conditions may be pre-adapted to future OA highlighting the importance to understand and monitor environmental variations in order to be able to to predict sensitivity to future climate changes. More stress ecology research is needed at the frontier between ecotoxicology and ecology, going beyond standardized tests using model species in order to address multiple water quality factors (e.g. pH, temperature, toxicants) and organism health. However, available data allow us to conclude that near-future OA will have negative impact on echinoderm taxa with likely significant consequences at the ecosystem level.


Ocean acidification Climate change Echinoderm CO2 



This work was performed within the Linnaeus Centre for Marine Evolutionary Biology at the University of Gothenburg (, and supported by a Linnaeus-grant from the Swedish Research Councils VR and Formas and the Royal Swedish Academy of Sciences. This paper is a contribution to the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement N211384. The authors also thank Knut & Alice Wallenbergs Stiftelsen, BAS Q4 BIOREACH/BIOFLAME core program for financial support and EMBO for a long term fellowship to OO.


  1. Ablanedo N, Gonzàlez H, Ramirez M, Torres I (1990) Evaluación del erizo de mar Echinometra lucunter como indicator de contaminación por metals pesados, Cuba. Aquat Living Resour 3:113–120CrossRefGoogle Scholar
  2. Agnello M, Filosto S, Scudiero E, Rinaldi AM, Coccheri MC (2007) Cadmium induces an apoptotic response in sea urchin embryos. Cell Stress Chaperones 12:44–50CrossRefGoogle Scholar
  3. Anderson S, Hoffmann E, Steward D, Harte J (1990) Ambient toxicity characterization of San Francisco Bay and adjacent wetland ecosystems. LBL Report 29579Google Scholar
  4. Barbaglio A, Sugni M, Mozzi D, Invernizzi A, Doria A, Pacchetti G, Tremolada O, Bonasoro F, Candia Carnevali MD (2004) Exposure of organotin compounds (TPT-C1) on regenerative potential of crinoids. In: Heinzeller T, Nebelsick JH (eds) Echinoderms: München. Taylor & Francis group, London, pp 91–95Google Scholar
  5. Bay S, Burgess R, Nacci D (1993) Status and applications of Echinoid (Phylum Echinodermata) toxicity test methods. In: Landis WG, Hugues JS, Lewis MA (eds) Environmental Toxicology and Risk Assessment. American Society for Testing and Materials, Philadelphia, pp 281–302CrossRefGoogle Scholar
  6. Bellas J (2008) Prediction and assessment of a mixture toxicity of compounds in antifouling paints. Aquat Toxicol 88:308–315CrossRefGoogle Scholar
  7. Bowmer T, Keegan BF (1983) Field survey of the occurrence and significance of regeneration in Amphiura filiformis (Echinodermata: Ophiuroidea) from Galway Bay, west coast of Ireland. Mar Biol 74:65–71CrossRefGoogle Scholar
  8. Byrne M (1994) Ophiuroidea. In: Harrison FW, Chia FS (eds) Microscopic anatomy of invertebrates, Echinodermata, vol 14. Wiley-Liss Inc, New-York, pp 247–343Google Scholar
  9. Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA, Davis AR (2009a) Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proc R Soc B 276:1883–1888CrossRefGoogle Scholar
  10. Byrne M, Soars N, Selvakumaraswamy P, Dworjanyn SA, David AR (2009b) Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Mar Environ Res doi: 10.1016/j.marenvres.2009.10.014
  11. Calabrese EJ (2005) Toxicological awakenings: the rebirth of hormesis as a central pillar of toxicology. Toxicol Appl Pharmacology 204:1–8CrossRefGoogle Scholar
  12. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  13. Calosi P, Bilton DT, Spicer JI, Atfield A (2008) Thernal tolerance and geographical range size in the Agabus brunneus group of European diving beetles (Coleoptera: Dytiscidae). J Biogeogr 35:295–305Google Scholar
  14. Candia Carnevali MD, Bonasoro F, Patruno M, Thorndyke MC, Galassi S (2001a) PCB exposure and regeneration in crinoids (Echinodermata). Mar Ecol Prog Ser 215:155–167CrossRefGoogle Scholar
  15. Candia Carnevali MD, Galassi S, Bonasoro F, Patruno M, Thorndyke MC (2001b) Regenerative response and endocrine disrupters in crinoid echinoderms: arm regeneration in Antedon mediterranea after experimental exposure to polychlorinated biphenyls. J Exp Biol 204:835–842Google Scholar
  16. Candia Carnevali MD, Bonasoro F, Ferreri P, Galassi S (2003) regenerative potential and effect of exposure to pseudo-estrogenic contaminants (4-nonyphenol) in the crinoids Antedon mediterranea. In: Feral JP, David B (eds) Echinoderm Research 2001. Swets & Zeitlinger, Lisse, pp 201–207Google Scholar
  17. Carr RS, Biedenbach JM, Nipper M (2006) Influence of potentially confounding factors on sea urchin porewater toxicity tests. Arch Environ Contam Toxicol 51:573–579CrossRefGoogle Scholar
  18. Cavey MJ, Märkel K (1994) Echinoidea. In: Harrison FW, Chia FS (eds) Microscopic anatomy of invertebrates, Echinodermata, vol 14. Wiley-Liss Inc, New-York, pp 345–400Google Scholar
  19. Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol 156:1125–1137CrossRefGoogle Scholar
  20. D’Andrea AF, Stancyk SE, Chandler GT (1996) Sublethal effects of cadmium on arm regeneration in the burrowing brittlestar, Microphiopholis gracillima. Ecotoxicol 5:115–133CrossRefGoogle Scholar
  21. Dashfield SL, Somerfield P, Widdicombe S, Austen MC, Nimmo M (2008) Impacts of ocean acidification and burrowing urchins on within-sediment pH profiles and subtidal nematode communities. J Exp Mar Biol Ecol 365:46–52CrossRefGoogle Scholar
  22. Davoult D, Migné A (2001) Respiration and excretion of a dense Ophiothrix fragilis population in the Bay of Seine (English Channel, France). In: Barker M (ed) Echinoderms 2000. Swets & Zeitlinger, Lisse, pp 243–248Google Scholar
  23. Dickson AG, Sabine CL, Christian JR (2007) Guide to best practice for ocean CO2 measurements, PICES Special Publication 3Google Scholar
  24. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192CrossRefGoogle Scholar
  25. Dulvy NK, Sadovy Y, Reynolds JD (2003) Extinction and vulnerability in marine populations. Fish Fish 4:25–64Google Scholar
  26. Dupont S, Thorndyke MC (2006) Growth or differentiation? Adaptative regeneration in the brittlestar Amphiura filiformis. J Exp Biol 209:3873–3881CrossRefGoogle Scholar
  27. Dupont S, Thorndyke MC (2007) Bridging the regeneration gap: insights from echinoderm models. Nat Rev genetics 8. doi: 10.1038/nrg1923-c1
  28. Dupont S, Thorndyke MC (2009a) Ocean Acidification and its impact on the early life-history stages of marine animals. In: Briand F (ed) Impacts of acidification on biological, chemical and physical systems in the Mediterranean and Black Seas. N° 36 in CIESM Workshop Monographs. CIESM, Monaco., pp 89–98Google Scholar
  29. Dupont S, Thorndyke MC (2009b) Impact of CO2-driven ocean acidification on invertebrates early life-history–what we know, what we need to know and what we can do (Discussion paper). Biogeosciences 6:3109–3131Google Scholar
  30. Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) CO2-driven ocean acidification radically affect larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294CrossRefGoogle Scholar
  31. Dupont S, Wren J, Ortega-Martinez O, Stumpp M, Melzner F, Thorndyke M (submitted) Impact of CO2-driven ocean acidification on echinoderm larval survival is species-specific and not easy to predict – to a working hypothesis. In: Proceedings of the 13th international echinoderm conferenceGoogle Scholar
  32. Elkin C, Marshall SJ (2007) Desperate larvae : influence of deferred costs and habitat requirements on habitat selection. Mar Ecol Prog Ser 335:142–153CrossRefGoogle Scholar
  33. Filisto S, Roccheri M, Bonaventura R, Matranga V (2008) Environmentally relevant cadmium concentrations affect development and induce apoptosis of Paracentrotus lividus larvae cultured in vitro. Cell Biol Toxicol 24:603–610CrossRefGoogle Scholar
  34. Freedman B (1995) Environmental ecology: the ecological effects of pollution, disturbance and other stresses, 2nd edn. Academic Press, San DiegoGoogle Scholar
  35. Gattuso JP, Lavigne H (2009) Perturbation experiments to investigate the impact of ocean acidification: approaches and software tools (Discussion paper). Biogeosciences 6:4413–4439Google Scholar
  36. Gooding RA, Harley CDG, Tang E (2009) Elevated water temperature and carbone dioxide concentration increase the growth of a keystone echinoderm. Proc Natl Acad Sci USA 106:9316–9321CrossRefGoogle Scholar
  37. Granberg ME (2004) Role of sediment organic matter quality and benthic organisms for the fate of organic contaminants on marine systems. PhD dissertation, Gothenburg UniversityGoogle Scholar
  38. Gunnarsson JS, Granberg ME, Nilsson HC, Rosenberg R, Hellman B (1999) Influence of sediment-organic matter quality on growth and polychlorobiphenil bioavailability in Echinodermata (Amphiura filiformis). Environ Toxicol Chem 18:1534–1543CrossRefGoogle Scholar
  39. Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosysytem effects of ocean acidification. Nature 454:96–99CrossRefGoogle Scholar
  40. Hamdoun A, Epel D (2007) Embryo stability and vulnerability in an always changing world. Proc Natl Acad Sci USA 104:1745–1750CrossRefGoogle Scholar
  41. Havenhand J, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:R651–R652CrossRefGoogle Scholar
  42. Heinzeller T, Welsch U (1994) Crinoidea. In: Harrison FW, Chia FS (eds) Microscopic anatomy of invertebrates, Echinodermata, vol 14. Wiley-Liss Inc, New-York, pp 9–148Google Scholar
  43. Hendriks IE, Duarte CM, Alvarez M (2009) Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuar Coast Shelf Sci doi: 10.1016/j.ecss.2009.11.022
  44. Hernández OD, Gutièrrez AJ, Gonzàlez-Weller D, Lozano G, Melòn EG, Rubio C, Hardisson A (2009) Accumulation of toxic metals (Pb and Cd) in the sea urchin Diadema aff. antillarum Philippi, 1845, in an oceanic island (Tenerife, Canary Islands). Environ Toxicol doi: 10.1002/tox.20487
  45. Hyman LH (1955) The invertebrates. Vol IV Echinodermata, McGraw-Hill, New-YorkGoogle Scholar
  46. Iglesias-Rodrıguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, von Dassow P, Rehm E, Armbrust EV, Boessenkool KP (2008) Phytoplankton calcification in a high CO2 world. Science 320:336–339CrossRefGoogle Scholar
  47. Kassahn KS, Crozier RH, Pörtner HO, Caley MJ (2009) Animal performance and stress: responses and tolerance limits at different levels of biological organization. Biol Rev 84:277–292CrossRefGoogle Scholar
  48. Kendall MA, Bowman RS, Williamson P, Lewis JR (1985) Annual recruitment of Semibalanus balanoides. Ecology 54:384–390Google Scholar
  49. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284CrossRefGoogle Scholar
  50. Kurihara H, Shirayama Y (2004a) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169CrossRefGoogle Scholar
  51. Kurihara H, Shirayama Y (2004b) Effects of increased atmospheric CO2 and decreased pH on sea urchin embryos and gametes. In: Heinzeller T, Nebelsick JH (eds) Echinoderms: München. Taylor & Francis group, London, pp 31–36Google Scholar
  52. Kurihara H, Shimode S, Shirayama Y (2004) Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. J Oceanography 60:743–750CrossRefGoogle Scholar
  53. Laegdsgaard P, Byrne M, Anderson DT (1991) Reproduction of sympatric populations of Heliocidaris erythrogramma and H tuberculata (Echinoidea) in New South Wales. Mar Biol 110:359–374CrossRefGoogle Scholar
  54. Lamare MD, Barker MF (1999) In situ estimates of larval development and mortality in the New Zealand sea urchin Evechinus chloroticus (Echinodermata: Echinoidea). Mar Ecol Prog Ser 180:197–211CrossRefGoogle Scholar
  55. Lefebvre A, Davoult D (1997) Recrutement d’Ophiothrix fragilis (Echinoderme: ophiuride) en Manche orientale: Etude biométrique. J Res Oceanogr 22:109–116Google Scholar
  56. Lesser MP, Krusse VA, Barry TM (2003) Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos. J Exp Biol 206:4097–4103CrossRefGoogle Scholar
  57. Lisette Vega R, Epel D (2004) Stress-induced apoptosis in sea urchin embryogenesis. Mar Environ Res 58:799–802CrossRefGoogle Scholar
  58. Micael J, Alves MJ, Costa AC, Jones MB (2009) Exploitation and conservation of echinoderms. Oceanog Mar Biol 47:191–208Google Scholar
  59. Miles H, Widdicombe S, Spicer JI, Hall-spencer J (2007) Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Mar Pollut Bull 54:89–96CrossRefGoogle Scholar
  60. Miner BG (2005) evolution of feeding structure plasticity in marine invertebrate larvae: a possible trade-off between arm length and stomach size. J Exp Mar Biol Ecol 315:117–125CrossRefGoogle Scholar
  61. Mucci A (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am J Sci 283:780–799Google Scholar
  62. Muus K (1981) Density and growth of juvenile Amphiura filiformis (Ophiuroidea) in the Oresund. Ophelia 20:153–168Google Scholar
  63. Novelli AA, Argese E, Tagliapietre D, Bettiol C, Volpi Ghirardini A (2002) Toxicity of tributyltin and triphenyltin to early life-styles of Paracentrotus lividus (Echinodermata: Echinoidea). Environ Toxicol Chem 21:859–864CrossRefGoogle Scholar
  64. O’Donnell MJ, Hammond LM, Hofmann GF (2009) Predicted impact of ocean acidification on a marine invertebrate: elecated CO2 alters response to thermal stress in sea urchin larvae. Mar Biol 156:439–446CrossRefGoogle Scholar
  65. O’Neill P (1989) Structure and mechanics of starfish body wall. J Exp Biol 147:53–89Google Scholar
  66. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  67. Pechenik JA (1999) On the advantages and disadvantages of larval stages in the benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297CrossRefGoogle Scholar
  68. Pennington JT, Strathmann RR (1990) Consequences of the calcite skeletons of planktonic echinoderm larvae for orientation, swimming, and shape. Biol Bull 179:121–133CrossRefGoogle Scholar
  69. Politi Y, Arod T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcite carbonate phase. Science 306:1161–1164CrossRefGoogle Scholar
  70. Pörtner HO, Dupont S, Melzner F, Storch D, Thorndyke M (2010) Studies of metabolic and other characters across life stages. In: Guide for best practices in ocean acidification research and data reporting. Available via EPOCA.
  71. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367CrossRefGoogle Scholar
  72. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134CrossRefGoogle Scholar
  73. Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide. Policy Document 12/05, The Royal Scoety, LondonGoogle Scholar
  74. Ruttimann J (2006) Sick seas. Nature 442:978–980CrossRefGoogle Scholar
  75. Selck H, Granberg ME, Forbes VE (2004) Impact of sediment organic matter quality on the fate and effects of fluoranthene in the infaunal brittle star Amphiura filiformis. Mar Environ Res 59:19–46CrossRefGoogle Scholar
  76. Serafy DK, Fell FJ (1985) Marine flora and fauna of the Northeastern United States. Echinodermata: Echinoidea. NOAA Technical Report NMFS 33Google Scholar
  77. Shirayama Y, Thornton H (2005) Effect of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res 110, doi: 10.1029/2004JC002618
  78. Sköld M, Rosenberg R (1996) Arm regeneration frequency in eight species of ophiuroidea (Echinodermata) from European sea areas. J Sea Res 35:353–362CrossRefGoogle Scholar
  79. Smiley S (1994) Holothuroidea. In: Harrison FW, Chia FS (eds) Microscopic anatomy of invertebrates, Echinodermata, vol 14. Wiley-Liss Inc, New-York, pp 410–471Google Scholar
  80. Sørensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037CrossRefGoogle Scholar
  81. Sugni M, Mozzi D, Barbaglio A, Bonasoro F, Candia Carnevali MD (2007) Endocrine disrupting compounds and echinoderms: new ecotoxicological sentinels for the marine ecosystem. Ecotoxicology 16:95–108CrossRefGoogle Scholar
  82. Taban IC, Bechmann RK, Torgrimsen S, Baussant T, Sanni S (2004) Detection of DNA damage in mussels and sea urchins exposed to crude oil using comet assay. Mar Environ Res 58:701–705CrossRefGoogle Scholar
  83. Todgham AE, Hofmann GE (2009) Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 212:2579–2594CrossRefGoogle Scholar
  84. Van Straalen NM (2003) Ecotoxicology becomes stress ecology. Environ Sci Technol 324–330Google Scholar
  85. Walsh GE, McLaughlin LL, Louie MK, Deans CH, Lores EM (1986) Inhibition of arm regeneration by Ophioderma brevispina (Echinodermata: Ophiuroidea) by tributyltin oxide and triphenyltin oxide. Ecotoxicol Environ Saf 12:95–100CrossRefGoogle Scholar
  86. Warner GF (1971) On the ecology of a dense bed of the brittlestar Ophiothrix fragilis. J Mar Biol Assoc UK 55:199–210Google Scholar
  87. Whooten JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high resolution multi-year dataset. Proc Natl Acad Sci USA 105:18848–18853CrossRefGoogle Scholar
  88. Widdicombe S, Dupont S, Thorndyke M (2010) Laboratory experiments and benthic mesocosm studies. In: Guide for best practices in ocean acidification research and data reporting. Available via EPOCA.
  89. Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc B 275:1767–1773CrossRefGoogle Scholar
  90. Wood HL, Widdicombe S, Spicer JI (2009) The influence of hypercapnia and the infaunal brittlestar Amphiura filiformis on sediment nutrient flux–will ocean acidification affect nutrient exchange? Biogeosciences 6:2015–2024CrossRefGoogle Scholar
  91. Zalasiewicz J, Williams M, Smith A, Barry TL, Coe AL, Bown PR, Brenchley P, Cantrill D, Gale A, Gibbard P, Gregory FJ, Hounslow MW, Kerr AC, Pearson P, Knox R, Powell J, Waters C, Marshall J, Oates M, Rawson P, Stone P (2008) Are we now living in the Anthropocene. GSA Today 18:4–8CrossRefGoogle Scholar
  92. Zito F, Costa C, Sciarrino S, Cavalcante C, Poma V, Matranga V (2005) Cell adhesion and communication: a lesson from echinoderm embryos for the exploitation of new therapeutic tools. Prog Mol Subcell Biol 39:7–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Marine Ecology, The Sven Lovén Centre for Marine SciencesUniversity of GothenburgKristinebergSweden
  2. 2.The Sven Lovén Centre for Marine SciencesRoyal Swedish Academy of SciencesKristinebergSweden

Personalised recommendations