, Volume 18, Issue 8, pp 1051–1057 | Cite as

Improved sea-urchin embryo bioassay for in situ evaluation of dredged material

  • M. J. SalamancaEmail author
  • N. Fernández
  • A. Cesar
  • R. Antón
  • P. Lopez
  • Á. Delvalls


Sediments usually contain many contaminants derived from human activities. In case of dredging activities, these sediment-bound contaminants arise following the excavation and remobilization of sediments. Previous studies have used different species of clam, crabs, lugworms, etc. for the evaluation of dredged material in situ, but there are not studies that use acute bioassays for these purposes. The sea-urchin embryo bioassay has been chosen to characterize biological effects in situ in two ports of the southwest of Spain, the Port of Huelva and the Port of Cadiz. The sea-urchin embryo bioassay has been adapted for in situ evaluation of seawater quality in coastal areas, however, they are necessary for further improvements to take into account differences of temperature between sites. This temperature variation is one of the principal reasons (other than pollution) of larval mortality and the slow down in the growth rate of the urchin. In the present study a bioassay was conducted in both field and laboratory conditions, in order to compare the effects in situ with the effects under controlled conditions of temperature, salinity and oxygen dissolved. Results showed a good correlation between samples obtained in situ and in the laboratory, but in the field the percentage of normal pluteus larvae is less than under laboratory conditions.


Paracentrotus lividus Larvae Water quality Metal Bioassay 



This work was supported by the Spanish Ministry of Science and Education through the grants referenced as PET2006_0685_00, PET2006_0685_01, CTM2005-07282-C03-01 and CTM2005-07282-C03-02. We thank the Port Authority staff at Huelva for their help during sampling and in situ bioassay activities.


  1. Beiras R, Vázque E, Bellas J, Lorenzo JI, Fernández N, Macho G, Mariño JC, Casas L (2001) Sea-urchin embryo bioassay for in situ evaluation of the biological quality of coastal seawater. Estuar Coast Shelf Sci 52:29–32CrossRefGoogle Scholar
  2. Bellas J, Beiras R, Mariño JC, Fernández N (2005) Toxicity of organic compounds to marine invertebrates’ embryos and larvae: a comparison between sea urchin embryogenesis bioassay and alternative test species. Ecotoxicology 14:337–353CrossRefGoogle Scholar
  3. Buchanan JB (1984) Sediment analysis. In: Holme NA, Mcintyre AD (eds) Methods for the study of marine Benthos. Blackwell, Cambridge, pp 41–65Google Scholar
  4. Burton GA Jr, Greenberg MS, Rowland CD, Irvine CA, Lavoie DR, Brooker JA, Moore L, Raymer DFN, McWilliam RA (2005) In situ exposures using caged organisms: a multi‐compartment approach to detect aquatic toxicity and bioaccumulation. Environ Pollut 134(1):133–144CrossRefGoogle Scholar
  5. Casado-Martinez MC, Forja JM, DelValls TA (2007) Direct comparison of amphipod sensitivities to dredged sediments from Spanish ports. Chemosphere 68(4):677–685CrossRefGoogle Scholar
  6. Casado-Martínez MC, Fernández N, Lloret J, Marín A, Martínez-Gómez C, Riba I, Beiras R, Saco-Álvarez L, DelValls TA (2006) Interlaboratory assessment of marine bioassays to evaluate the environmental quality of coastal sediments in Spain. III. Bioassay using embryos of the sea urchin Paracentrotus lividus. Cienc Mar 32(1B):139–147Google Scholar
  7. CEDEX (1994) Recomendaciones para la gestión del material de dragado en los puertos españoles. Centro de Estudios y Experimentación de Obras Públicas. Puertos del Estado, Madrid, p 45Google Scholar
  8. César A, Marín A, Marín-Guirao L, Vita R (2004) Amphipod and sea urchin tests to assess the toxicity of Mediterranean sediments: the case of Portmán Bay. Sci Mar 68(1):205–213CrossRefGoogle Scholar
  9. El Rayis OA (1985) Re-assessment of the titration method for the determination of organic carbon in recent sediments. Rapp Comm Int Mer Medit 29:45–47Google Scholar
  10. Fernández N (2002) Evaluación biológica de la contaminación marina costera mediante bioensayos con embriones del erizo de mar Paracentrotus lividus. PhD Thesis, Universidade de Vigo, Vigo, Spain, p 221Google Scholar
  11. Fernández N, Beiras R (2001) Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 10:263–271CrossRefGoogle Scholar
  12. Gaudette HE, Flight WR, Torner L, Folger DW (1974) An inexpensive titration method for the determination of organic carbon in recent sediments. J Sediment Petrol 44:249–253Google Scholar
  13. Ingersoll CG (1995) Sediment tests. In: Rand GM (ed) Fundamentals of aquatic toxicology. Taylor & Francis, USA, pp 231–255Google Scholar
  14. Kobayashi N (1981) Comparative toxicity of various chemicals, oil extracts and oil dispersant extracts to Canadian and Japanese sea urchin eggs. Publ Seto Mar Biol Lab XXVI(1/3):123–133Google Scholar
  15. Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Sci Rev 32:235–283CrossRefGoogle Scholar
  16. Luoma SN, Ho KT (1993) The appropriate uses of marine and estuarine sediment bioassays. In: Calow P (ed) The handbook of ecotoxicology. Blackwell Scientific, Oxford, pp 193–226Google Scholar
  17. Marín-Guirao L, Cesar A, Marín A, Vita R (2005) Assessment of sediment metal contamination in the Mar Menor coastal lagoon (SE Spain): metal distribution, toxicity, bioaccumulation and benthic community structure. Cienc Mar 31(2):413–428Google Scholar
  18. Martín-Díaz ML, Blasco J, Sales D, DelValls TA (2004) Biomarkers as tools to assess sediment quality. Laboratory and field surveys. Trends Anal Chem 23(10–11):807–818CrossRefGoogle Scholar
  19. Pérez-Llorens JL, Brun FG, Andría J, Vergara JJ (2004) Seasonal and tidal variability of environmental carbon related physico-chemical variables and inorganic C acquisition in Gracilariopsis longissima and Enteromorpha intestinalis from Los Toruños salt marsh (Cádiz Bay, Spain). J Exp Mar Biol Ecol 304(2):183–201CrossRefGoogle Scholar
  20. Smith EH, Logan DT (1993) Invertebrate behavior as an indicator of contaminated water and sediments. In: Gorsuch JW, Dwyer FJ, Ingersoll CG, La Point TW (eds) Aquatic toxicology and risk assessment, vol 2. American Society for Testing and Materials, Philadelphia, PA, pp 48–61Google Scholar
  21. USEPA (1994) Water quality standards handbook. EPA-823-B-94-005b, 2nd edn. Office of Water, WashingtonGoogle Scholar
  22. USEPA (1996) Polychlorinated biphenyls (PCBs) by gas chromatography. EPA-8082. Test methods for evaluating solid waste physical/chemical (SW-846). Office of Solid Waste and Emergency Response, Washington, DCGoogle Scholar
  23. USEPA (1998) Evaluation of dredged material proposed for discharge in waters on the US-testing manual. EPA-823-B-98-004. Department of Army of Environmental Protection Agency of United States, Washington, DCGoogle Scholar
  24. Viguri JR, Irabien MJ, Yusta I, Soto J, Gómez J, Rodríguez P, Martínez-Madrid M, Irabien JA, Coz A (2007) Physico-chemical and toxicological characterisation of the historic estuarine sediments: a multidisciplinary approach. Environ Int 33:436–444CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. J. Salamanca
    • 1
    Email author
  • N. Fernández
    • 2
  • A. Cesar
    • 3
  • R. Antón
    • 1
  • P. Lopez
    • 1
  • Á. Delvalls
    • 1
  1. 1.Cátedra UNESCO/UNITWIN/WiCop, Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizPuerto RealSpain
  2. 2.Recursos Mariños e PesqueríasUniversidade da CoruñaA CoruñaSpain
  3. 3.Laboratório de EcotoxicologiaSantosBrazil

Personalised recommendations