Ecotoxicology

, Volume 18, Issue 5, pp 514–521 | Cite as

The corticosterone stress response and mercury contamination in free-living tree swallows, Tachycineta bicolor

  • Melinda D. Franceschini
  • Oksana P. Lane
  • David C. Evers
  • J. Michael Reed
  • Bart Hoskins
  • L. Michael Romero
Article

Abstract

We determined mercury concentrations in tree swallows, Tachycineta bicolor, from Massachusetts and Maine with different levels of contamination. Baseline and stress-induced plasma corticosterone concentrations from adults and nestlings (Massachusetts only) were compared with mercury concentrations. In Massachusetts, adult baseline corticosterone was negatively correlated with blood mercury, but showed a nearly-significant positive correlation with feather mercury. There was a negative relationship between baseline corticosterone and blood mercury in nestlings and between baseline corticosterone and egg mercury. There was no relationship between mercury and stress-induced corticosterone in any of the groups, or with baseline corticosterone in Maine sites where mercury levels were lower. The findings suggest blood and egg mercury may be a better indicator of current condition than feather mercury. Further, mercury contamination may not alter stress-induced corticosterone concentrations in tree swallows but appears to have a significant impact on baseline circulating corticosterone.

Keywords

Corticosterone Mercury Stress Tree swallows 

Notes

Acknowledgments

This project was made possible through a grant from Tufts University Institute for the Environment to MDF, and grants from the US National Science Foundation (IBN-0235044 and IOB-0542099) to LMR.

References

  1. Becker PH (2003) Biomonitoring with birds. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators & biomonitors: principles, concepts and applications. Elsevier Science Ltd, Amsterdam, pp 677–736CrossRefGoogle Scholar
  2. Bleau H, Daniel C, Chevalier G, van Tra H, Hontela A (1996) Effects of acute exposure to mercury chloride and methylmercury on plasma cortisol, T3, T4, glucose and liver glycogen in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 34:221–235. doi: 10.1016/0166-445X(95)00040-B CrossRefGoogle Scholar
  3. Bowerman WW, Mehne CJ, Best DA, Refsal KR, Lombardini S, Bridges WC (2002) Adrenal corticotropin hormone and nestling bald eagle corticosterone levels. Bull Environ Contam Toxicol 68:355–360. doi: 10.1007/s001280261 CrossRefGoogle Scholar
  4. Brasso RL, Cristol DA (2008) Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology 17:133–141. doi: 10.1007/s10646-007-0163-z CrossRefGoogle Scholar
  5. Burger J, Gochfeld M (1997) Risk, mercury levels, and birds: relating adverse laboratory effects to field biomonitoring. Environ Res 75:160–172. doi: 10.1006/enrs.1997.3778 CrossRefGoogle Scholar
  6. Burgess NM, Meyer MW (2008) Methylmercury exposure associated with reduced productivity in common loons. Ecotoxicology 17:83–91. doi: 10.1007/s10646-007-0167-8 CrossRefGoogle Scholar
  7. Butler RW (1988) Population dynamics and migration routes of Tree Swallows, Tachycineta bicolor, in North America. J Field Ornithol 59:395–402Google Scholar
  8. Cockrem JF (2005) Conservation and behavioral neuroendocrinology. Horm Behav 48:492. doi: 10.1016/j.yhbeh.2005.03.008 CrossRefGoogle Scholar
  9. Cockrem JF, Silverin B (2002) Variation within and between birds in corticosterone responses of great tits (Parus major). Gen Comp Endocrinol 125:197–206. doi: 10.1006/gcen.2001.7750 CrossRefGoogle Scholar
  10. Cox, Snell (1989) The analysis of binary data. Chapman Hall, LondonGoogle Scholar
  11. Cristol DA, Rebecka Brasso L, Anne Condon M, Rachel Fovargue E, Scott Friedman L, Kelly Hallinger K, Adrian Monroe P, Ariel White E (2008) The Movement of Aquatic Mercury Through Terrestrial Food Webs. Science 320:335. doi: 10.1126/science.1154082 CrossRefGoogle Scholar
  12. Custer CM, Custer TW, Allen PD, Stromborg KL, Melancon MJ (1998) Reproduction and environmental contamination in tree swallows nesting in the Fox River drainage and Green Bay, Wisconsin, USA. Environ Toxicol Chem 17:1786–1798. doi: 10.1897/1551-5028(1998)017<1786:RAECIT>2.3.CO;2 CrossRefGoogle Scholar
  13. Custer CM, Custer TW, Coffey M (2000) Organochlorine chemicals in tree swallows nesting in pool 15 of the upper Mississippi River. Bull Environ Contam Toxicol 64:341–346. doi: 10.1007/s001280000005 CrossRefGoogle Scholar
  14. Custer CM, Custer TW, Warburton D, Hoffman DJ, Bickham JW, Matson CW (2006) Trace element concentrations and bioindicator responses in tree swallows from Northwestern Minnesota. Environ Monit Assess 118:247–266. doi: 10.1007/s10661-006-1499-1 CrossRefGoogle Scholar
  15. Dallman MF, Bhatnagar S (2001) Chronic stress and energy balance: role of the hypothalamo-pituitary-adrenal axis. In: McEwen BS, Goodman HM (eds) Handbook of physiology; section 7: the endocrine system; volume IV: coping with the environment: neural and endocrine mechanisms. Oxford University Press, New York, pp 179–210Google Scholar
  16. DeSteven D (1980) Clutch size, breeding success, and parental survival in the Tree Swallow. Evol Int J Org Evol 34:278–291. doi: 10.2307/2407392 Google Scholar
  17. Evers DC, Burgess NM, Champoux L, Hoskins B, Major A, Goodale WM, Taylor RJ, Poppenga R, Daigle T (2005) Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology 14:193–221. doi: 10.1007/s10646-004-6269-7 CrossRefGoogle Scholar
  18. Evers DC, Han YJ, Driscoll CT, Kamman NC, Goodale MW, Lambert KF, Holsen TM, Chen CY, Clair TA, Butler T (2007) Identification and evaluation of biological hotspots of mercury in the Northeastern US and Eastern Canada. Bioscience 57:29–43. doi: 10.1641/B570107 CrossRefGoogle Scholar
  19. Evers DC, Savoy L, DeSorbo CR, Yates D, Hanson W, Taylor KM, Siegel L, Cooley JH, Bank M, Major A, Munney K, Vogel HS, Schoch N, Pokras M, Goodale W, Fair J (2008) Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:69–81. doi: 10.1007/s10646-007-0168-7 CrossRefGoogle Scholar
  20. Franceschini MD (2007) Glucocorticoids and wildlife health: evaluating the stress of translocation and chronic contaminant exposure. Thesis (Ph.D.), Tufts UniversityGoogle Scholar
  21. Franceschini MD, Custer CM, Custer TW, Reed JM, Romero LM (2008) Corticosterone stress response in tree swallows nesting near polychlorinated biphenyl and dioxin contaminated rivers. Environ Toxicol Chem 27:2326–2331. doi: 10.1897/07-602.1 CrossRefGoogle Scholar
  22. Gendron AD, Bishop CA, Fortin R, Hontela A (1997) In vivo testing of the functional integrity of the corticosterone-producing axis in mudpuppy (amphibia) exposed to chlorinated hydrocarbons in the wild. Environ Toxicol Chem 16:1694–1706. doi: 10.1897/1551-5028(1997)016<1694:IVTOTF>2.3.CO;2 CrossRefGoogle Scholar
  23. Gorsline J, Holmes W (1982) Variations in age in the adrenocortical responses of mallard ducks (Anas platyrhynchos) consuming petroleum-contaminated food. Bull Environ Contam Toxicol 29:146–152. doi: 10.1007/BF01606142 CrossRefGoogle Scholar
  24. Hansen PD (2003) Biomarkers. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators & biomonitors: principles, concepts and applications. Elsevier Science Ltd, Amsterdam, pp 203–220CrossRefGoogle Scholar
  25. Harris ML, Elliott JE (2000) Reproductive success and chlorinated hydrocarbon contamination in tree swallows (Tachycineta bicolor) nesting along rivers receiving pulp and paper mill effluent discharges. Environ Pollut 110:307–320. doi: 10.1016/S0269-7491(99)00296-1 CrossRefGoogle Scholar
  26. Heath JA, Frederick PC (2005) Relationships among mercury concentrations, hormones, and nesting effort or white ibises (Eudocimus albus) in the Florida Everglades. Auk 122:255–267. doi: 10.1642/0004-8038(2005)122[0255:RAMCHA]2.0.CO;2 CrossRefGoogle Scholar
  27. Holmes W, Gorsline J, Cronshaw J (1979) Effects of mild cold stress on the survival of seawater adapted mallard ducks (Anas platyrhynchos) maintained on food contaminated with petroleum. Environ Res 20:425–444. doi: 10.1016/0013-9351(79)90017-3 CrossRefGoogle Scholar
  28. Hontela A (1998) Interrenal dysfunction in fish from contaminated sites: in vivo and in vitro assessment. Environ Toxicol Chem 17:44–48. doi: 10.1897/1551-5028(1998)017<0044:IDIFFC>2.3.CO;2 CrossRefGoogle Scholar
  29. Hontela A, Rasmussen JB, Audet C, Chevalier G (1992) Impaired cortisol stress response in fish from environments polluted by PAHs, PCBs, and mercury. Arch Environ Contam Toxicol 22:278–283. doi: 10.1007/BF00212086 CrossRefGoogle Scholar
  30. Hontela A, Dumont P, Duclos D, Fortin R (1995) Endocrine and metabolic dysfunction in yellow perch, Perca flavescens, exposed to organic contaminants and heavy metals in the St. Lawrence River. Environ Toxicol Chem 14:725–731. doi: 10.1897/1552-8618(1995)14[725:EAMDIY]2.0.CO;2 CrossRefGoogle Scholar
  31. Hontela A, Daniel C, Rasmussen JB (1997) Structural and functional impairment of the hypothalamo-pituitary-interrenal axis in fish exposed to bleached kraft mill effluent in the St Maurice River, Quebec. Ecotoxicology 6:1–12. doi: 10.1023/A:1018699405158 CrossRefGoogle Scholar
  32. Hopkins WA, Mendonca MT, Congdon JD (1997) Increased circulating levels of testosterone and corticosterone in southern toads, Bufo terrestris, exposed to coal combustion waste. Gen Comp Endocrinol 108:237–246. doi: 10.1006/gcen.1997.6969 CrossRefGoogle Scholar
  33. Hopkins WA, Mendonca MT, Congdon JD (1999) Responsiveness of the hypothalamo-pituitary-interrenal axis in an amphibian (Bufo terrestris) exposed to coal combustion wastes. Comp Biochem Physiol C 122:191–196CrossRefGoogle Scholar
  34. Kirubagaran R, Joy KP (1991) Changes in adrenocortical-pituitary activity in the catfish, Clarias batrachus (L.), after mercury treatment. Ecotoxicol Environ Saf 22:36–44. doi: 10.1016/0147-6513(91)90045-Q CrossRefGoogle Scholar
  35. Lockhart WL, Uthe JF, Kenney AR, Mehrle PM (1972) Methylmercury in northern pike (Esox-lucius): distribution, elimination, and some biochemical characteristics of contaminated fish. J Fish Res Board Can 29:1519–1523Google Scholar
  36. Longcore JR, Dineli R, Haines TA (2007) Mercury and Growth of Tree Swallows at Acadia National Park, and at Orono, Maine, USA. Environ Monit Assess 126:117–127. doi: 10.1007/s10661-006-9325-3 CrossRefGoogle Scholar
  37. Lorenzen A, Moon TW, Kennedy SW, Fox GA (1999) Relationships between environmental organochlorine contaminant residues, plasma corticosterone concentrations, and intermediary metabolic enzyme activities in great lakes herring gull embryos. Environ Health Perspect 107:179–186. doi: 10.2307/3434506 CrossRefGoogle Scholar
  38. Martinovic B, Lean D, Bishop CA, Birmingham E, Secord A, Jock K (2003) Health of tree swallow (Tachycineta bicolor) nestlings exposed to chlorinated hydrocarbons in the St. Lawrence River basin. Part II. Basal and stress plasma corticosterone concentrations. J Toxicol Environ Health A 66:2015–2029. doi: 10.1080/713853981 CrossRefGoogle Scholar
  39. Mayer FL, Versteeg DJ, McKee MJ, Folmar LC, Graney RL, McCume DC, Rattner BA (1992) Physiological and nonspecific biomarkers. In: Huggett RJ, Kimerle RA, Mehrle PMJ, Bergman HL (eds) Biomarkers: biochemical, physiological and histological markers of anthropogenic stress. Lewis Publishers, Chelsea, pp 5–86Google Scholar
  40. McCarty JP, Secord AL (1999) Nest-building behavior in PCB-contaminated tree swallows. Auk 116:55–63Google Scholar
  41. Miller DS, Peakall DB, Kinter WB (1978) Ingestion of crude oil: sublethal effects in herring gull chicks. Science 199:315–317. doi: 10.1126/science.145655 CrossRefGoogle Scholar
  42. Neigh AM, Zwiernik MJ, Bradley PW, Kay DP, Park CS, Jones PD, Newsted JL, Blankenship AL, Giesy JP (2006) Tree swallow (Tachycineta bicolor) exposure to polychlorinated biphenyls at the Kalamazoo River Superfund site, Michigan, USA. Environ Toxicol Chem 25:428–437. doi: 10.1897/04-493R.1 CrossRefGoogle Scholar
  43. Norris DO, Donahue S, Dores RM, Lee JK, Maldonado TA, Ruth T, Woodling JD (1999) Impaired adrenocortical response to stress by brown trout, Salmo trutta, living in metal-contaminated waters of the Eagle River, Colorado. Gen Comp Endocrinol 113:1–8. doi: 10.1006/gcen.1998.7177 CrossRefGoogle Scholar
  44. Rimmer CC, McFarland KP, Evers DC, Miller EK, Aubrey Y, Busby D, Taylor RJ (2005) Mercury concentrations in Bicknell’s thrush and other insectivorous passerines in montane forests of northeastern North America. Ecotoxicology 14:223–240. doi: 10.1007/s10646-004-6270-1 CrossRefGoogle Scholar
  45. Robertson RJ, Stutchbury BJ, Cohen RR (1992) Tree Swallow, Tachycineta bicolor. The American Ornithologists’ Union, Washington DCGoogle Scholar
  46. Romero LM, Reed JM (2005) Collecting baseline corticosterone samples in the field: is under three minutes good enough? Comp Biochem Physiol A 140:73–79Google Scholar
  47. Sapolsky RM (1998) Why zebras don’t get ulcers: an updated guide to stress, stress-related diseases and Coping. W.H. Freeman & Company, New YorkGoogle Scholar
  48. Sapolsky RM (2001) Physiological and pathophysiological implications of social stress in mammals. In: McEwen BS, Goodman HM (eds) Handbook of physiology. Sect. 7: the endocrine system. Oxford University Press, New York, USAGoogle Scholar
  49. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89. doi: 10.1210/er.21.1.55 CrossRefGoogle Scholar
  50. Scheuhammer AM, Basu N, Burgess NM, Elliott JE, Campbell GD, Wayland M, Champoux L, Rodrigue J (2008) Relationships among mercury, selenium, and neurochemical parameters in common loons (Gavia immer) and bald eagles (Haliaeetus leucocephalus). Ecotoxicology 17:93–101. doi: 10.1007/s10646-007-0170-0 CrossRefGoogle Scholar
  51. Smits JE, Wayland ME, Miller MJ, Liber K, Trudeau S (2000) Reproductive, immune, and physiological end points in tree swallows on reclaimed oil sands mine sites. Environ Toxicol Chem 19:2951–2960. doi: 10.1897/1551-5028(2000)019<2951:RIAPEP>2.0.CO;2 CrossRefGoogle Scholar
  52. Wayland M, Trudeau S, Marchant T, Parker D, Hobson KA (1998) The effect of pulp and paper mill effluent on an insectivorous bird, the tree swallow. Ecotoxicology 7:237–251. doi: 10.1023/A:1008942929560 CrossRefGoogle Scholar
  53. Wayland M, Gilchrist HG, Marchant T, Keating J, Smits JE (2002) Immune function, stress response, and body condition in arctic-breeding common eiders in relation to cadmium, mercury, and selenium concentrations. Environ Res 90:47–60. doi: 10.1006/enrs.2002.4384 CrossRefGoogle Scholar
  54. Wayland M, Smits JEG, Gilchrist HG, Marchant T, Keating J (2003) Biomarker responses in nesting, common eiders in the Canadian arctic in relation to tissue cadmium, mercury and selenium concentrations. Ecotoxicology 12:225–237. doi: 10.1023/A:1022506927708 CrossRefGoogle Scholar
  55. Wiener JG, Shields PJ (2000) Mercury in the Sudbury River (Massachusetts, U.S.A.): pollution history and a synthesis of recent research. Can J Fish Aquat Sci 57:1053–1061. doi: 10.1139/cjfas-57-5-1053 CrossRefGoogle Scholar
  56. Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2003) Ecotoxicology of mercury. In: Hoffman DJ, Rattner BA, Burton GAJ, Cairns JJ (eds) Handbook of ecotoxicology. Lewis Publishers, Boca Raton, pp 409–463Google Scholar
  57. Wikelski M, Romero LM, Snell HL (2001) Marine iguanas oiled in the Galapagos. Science 292:437–438. doi: 10.1126/science.292.5516.437c CrossRefGoogle Scholar
  58. Wingfield JC, Vleck CM, Moore MC (1992) Seasonal changes of the adrenocortical response to stress in birds in the Sonoran desert. J Exp Zool 264:419–428CrossRefGoogle Scholar
  59. Wingfield JC, Romero LM (2001) Adrenocortical responses to stress and their modulation in free-living vertebrates. Oxford University Press, New YorkGoogle Scholar
  60. Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160. doi: 10.1897/1551-5028(1998)017<0146:EOMOWA>2.3.CO;2 CrossRefGoogle Scholar
  61. Wolfe MF, Atkeson T, Bowerman W, Burger K, Evers DC, Murray MW, Zillioux E (2007) Wildlife indicators. In: Harris R, Krabbenhoft DP, Mason R, Murray MW, Reash R, Saltman T (eds) Ecosystem response to mercury contamination: indicators of change. CRC Press, SETAC, Webster, New York, pp 123–189Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Melinda D. Franceschini
    • 1
  • Oksana P. Lane
    • 2
  • David C. Evers
    • 2
  • J. Michael Reed
    • 1
  • Bart Hoskins
    • 3
  • L. Michael Romero
    • 1
  1. 1.Department of BiologyTufts UniversityMedfordUSA
  2. 2.BioDiversity Research InstituteGorhamUSA
  3. 3.US Environmental Protection AgencyNew England Regional LaboratoryNorth ChelmsfordUSA

Personalised recommendations