Advertisement

Ecotoxicology

, Volume 18, Issue 4, pp 455–463 | Cite as

Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient

  • Joana L. PereiraEmail author
  • Sara C. Antunes
  • Bruno B. Castro
  • Catarina R. Marques
  • Ana M. M. Gonçalves
  • Fernando Gonçalves
  • Ruth Pereira
Article

Abstract

The Ecological Risk Assessment of pesticides requires data regarding their toxicity to aquatic and terrestrial non-target species. Such requirements concern active ingredient(s), generally not considering the noxious potential of commercial formulations. This work intends to contribute with novel information on the effects of short-term exposures to two herbicides, with different modes of action (Spasor®, Stam Novel Flo 480®), and an insecticide (Lannate®), as well as to corresponding active ingredients (Glyphosate, Propanil and Methomyl, respectively). The microalga Pseudokirchneriella subcapitata (growth inhibition), the cladoceran Daphnia magna (immobilisation), and the earthworm Eisenia andrei (avoidance behaviour) were used as test species. Both herbicides were innocuous to all test organisms at environmentally realistic concentrations, except for Stam and Propanil (highly toxic for Pseudokirchneriella; moderately toxic to Daphnia). Lannate and Methomyl were highly toxic to Daphnia and caused Eisenia to significantly avoid the spiked soil at realistic application rates. The toxicity of formulations either overestimated (e.g. Stam/Propanil for P. subcapitata) or underestimated (e.g. Stam/Propanil for D. magna) that of the active ingredient.

Keywords

Propanil Methomyl Glyphosate Growth inhibition Immobilisation Avoidance 

Notes

Acknowledgments

Authors would like to thank Makhteshim Agan® (Portugal), Sapec Agro® (Portugal) and Lactema (Portugal) for the free supply of Methomyl; Glyphosate and Propanil; and Spasor®, respectively. Authors are also thankful to Ms Ana Cristina Ferreira for technical support. The Portuguese Foundation for Science and Technology (FCT, Portugal) financed Joana Luísa Pereira (SFRH/BPD/44733/2008), Sara Cristina Antunes (SFRH/BPD/40052/2007), and Catarina Ribeiro Marques (SFRH/BD/18339/2004) by the means of individual research grants.

References

  1. Antunes SC, Castro BB, Pereira R, Gonçalves F (2008) Contribution for tier 1 of the ecological risk assessment of Cunha Baixa Uranium Mine (central Portugal): II. Soil ecotoxicological screening. Sci Total Environ 390:387–395. doi: 10.1016/j.scitotenv.2007.07.053 CrossRefGoogle Scholar
  2. ASTM—American Society for Testing and Materials (1980) Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. Report E 729–780Google Scholar
  3. Baird DJ, Barber I, Bradley M, Calow P, Soares AMVM (1989a) The Daphnia bioassay: a critique. Hydrobiologia 188(189):403–406Google Scholar
  4. Baird DJ, Soares AMVM, Girling A, Barber I, Bradley MC, Calow P (1989b) The long-term maintenance of Daphnia magna Straus for use in ecotoxicity tests: problems and prospects. In: Lokke H, Tyle H, Bro-Rasmussen F (eds) Proceedings of the first European conference on ecotoxicology, Lyngby, p 144–148Google Scholar
  5. Baylis AD (2000) Why gliphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag Sci 56:299–308. doi: 10.1002/(SICI)1526-4998(200004)56:4<299::AID-PS144>3.0.CO;2-K CrossRefGoogle Scholar
  6. Bon D, Gilard V, Massou S, Pérès G, Malet-Martino M, Martino R, Desmoulin F (2006) In vivo 31P and 1H HR-MAS NMR spectroscopy analysis of the unstarved Aporrectodea caliginosa (Lumbricidae). Biol Fertil Soils 43:191–198. doi: 10.1007/s00374-006-0092-7 CrossRefGoogle Scholar
  7. Capowiez Y, Rault M, Costagliola G, Mazzia C (2005) Lethal and Sub-lethal effects of imidacloprid on two earthworm species (Aporrectodea nocturna and Allolobophora icterica). Biol Fertil Soils 41:135–143. doi: 10.1007/s00374-004-0829-0 CrossRefGoogle Scholar
  8. Cedergreen N, Streibig JC (2005) The toxicity of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard. Pest Manag Sci 61:1152–1160. doi: 10.1002/ps.1117 CrossRefGoogle Scholar
  9. Cerejeira MJ, Viana P, Batista S, Pereira T, Silva E, Valério MJ, Silva A, Ferreira M, Silva-Fernandes AM (2003) Pesticides in Portuguese surface and groundwaters. Water Res 37:1055–1063. doi: 10.1016/S0043-1354(01)00462-6 CrossRefGoogle Scholar
  10. Cox C, Surgan M (2006) Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ Health Perspect 114:1803–1806Google Scholar
  11. da Luz TN, Ribeiro R, Sousa JP (2004) Avoidance tests with Collembola and earthworms as early screening tools for site-specific assessment of polluted soils. Environ Toxicol Chem 23:2188–2193. doi: 10.1897/03-445 CrossRefGoogle Scholar
  12. EC (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC and 2000/21/EC. OJ L396/1, 30 December 2006Google Scholar
  13. EC—European Commission (2002a) Guidance document on terrestrial ecotoxicology under Council Directive 91/414/EEC. SANCO/10329/2002 Rev 2Google Scholar
  14. EC—European Commission (2002b) Guidance document on aquatic ecotoxicology. Under Council directive 91/414/EEC. SANCO/3268/2001 Rev 4Google Scholar
  15. EC—European Commission, Health & Consumer protection Directorate-General (2002c) Review report for the active substance glyphosate—Commission Working DocumentGoogle Scholar
  16. EEC (1991) Directive 91/414/EEC. Council Directive of 15 July 1991 concerning the placing of plant protection products on the market. OJ L 230, 19.08.1991Google Scholar
  17. Ehler LE (2004) An evaluation of some natural enemies of Spodoptera exigua on sugarbeet in Northern California. Biocontrol 49:121–135. doi: 10.1023/B:BICO.0000017364.20596.38 CrossRefGoogle Scholar
  18. Elendt BP, Bias WR (1990) Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimisation of culture conditions on life-history parameters of D. magna. Water Res 24:1157–1167. doi: 10.1016/0043-1354(90)90180-E CrossRefGoogle Scholar
  19. Fernández-Alba AR, Hernando D, Agüera A, Cáceres J, Malato S (2002) Toxicity assays: a way for evaluating AOPs efficiency. Water Res 36:4255–4262. doi: 10.1016/S0043-1354(02)00165-3 CrossRefGoogle Scholar
  20. Ferraz DGB, Sabater C, Carrasco JM (2004) Effects of propanil, tebufenozide and mefenacet on growth of four freshwater species of phytoplankton: a microplate bioassay. Chemosphere 56:315–320. doi: 10.1016/j.chemosphere.2004.01.038 CrossRefGoogle Scholar
  21. Fochtman P, Raszka A, Nierzedska E (2000) The use of conventional bioassays, microbiotests, and some “rapid” methods in the selection of an optimal test battery for the assessment of pesticides toxicity. Environ Toxicol 15:376–384. doi: 10.1002/1522-7278(2000)15:5<376::AID-TOX4>3.0.CO;2-7 CrossRefGoogle Scholar
  22. Frampton GK, Jänsch S, Scott-Fordsman JJ, Römbke J, Van den Brink PJ (2006) Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem 25:2480–2489. doi: 10.1897/05-438R.1 CrossRefGoogle Scholar
  23. Gonçalves AMM, de Figueiredo DR, Pereira MJ (2005) A low-cost methodology for algal growth inhibition tests using three freshwater green algae. Fresen Environ Bull 14:1192–1195Google Scholar
  24. Herrmann KL, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503. doi: 10.1146/annurev.arplant.50.1.473 CrossRefGoogle Scholar
  25. Hund-Rinke K, Simon M (2005) Terrestrial ecotoxicity of eight chemicals in a systematic approach. J Soils Sediments 5:59–65. doi: 10.1065/jss2004.10.123 CrossRefGoogle Scholar
  26. Hund-Rinke K, Wiechering H (2001) Earthworm avoidance test for soil assessments—an alternative for acute and reproduction tests. J Soils Sediments 1:15–20. doi: 10.1007/BF02986464 CrossRefGoogle Scholar
  27. ISO—International Organization for Standardization (2005). Soil quality: avoidance test for testing the quality of soils and the toxicity of chemicals—test with earthworms (Eisenia fetida). GeneveGoogle Scholar
  28. Jager T, Fleuren RHLJ, Hogendoorn EA, De Korte G (2003) Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Environ Sci Technol 37:3399–3404. doi: 10.1021/es0340578 CrossRefGoogle Scholar
  29. Jensen J, Mesman M (2006) Ecological risk assessment of contaminated land—decision support for site specific investigations. ISBN 90-6960-138-9/978-90-6960-138-0Google Scholar
  30. Kegley S, Hill B, Orme S (2007) PAN pesticides database. Pesticide action Network, North America, San Francisco (http://www.pesticideinfo.org)
  31. Krogh KA, Halling Sørensen B, MOrgensen BB, Vejrup KV (2003) Environmental properties and effects of non-ionic surfactant adjuvants in pesticides: a review. Chemosphere 50:871–901. doi: 10.1016/S0045-6535(02)00648-3 CrossRefGoogle Scholar
  32. Lavelle P, Decaëns T, Aubert M, Barot S, Blouin M, Bureau F, Margerie P, Mora P, Rossi J-P (2006) Soil invertebrates and ecosystem services. Eur J Soil Biol 42:S3–S15. doi: 10.1016/j.ejsobi.2006.10.002 CrossRefGoogle Scholar
  33. McMillan DC, McRae TA, Hinson JA (1990) Propanil-induced methemoglobinemia and haemoglobin binding in the rat. Toxicol Appl Pharmacol 105(3):503–507. doi: 10.1016/0041-008X(90)90153-L CrossRefGoogle Scholar
  34. O’Halloran K (2007) Toxicological considerations of contaminants in the terrestrial environment for ecological risk assessment. Hum Ecol Risk Assess 12:74–83. doi: 10.1080/10807030500428603 CrossRefGoogle Scholar
  35. Oakes DJ, Pollak JK (2000) The in vitro evaluation of the toxicities of three related herbicide formulations containing ester derivates of 2, 4, 5-T and 2, 4-D using sub-mitochondrial particles. Toxicology 151:1–9. doi: 10.1016/S0300-483X(00)00244-4 CrossRefGoogle Scholar
  36. OECD—Organisation for Economic Cooperation and Development (2004) OECD guideline for testing of chemicals—Daphnia sp., acute immobilisation testGoogle Scholar
  37. OECD—Organisation for Economic Cooperation and Development (2006) OECD guidelines for testing of chemicals—algal growth inhibition test, vol 201Google Scholar
  38. Pereira T, Cerejeira MJ, Espírito-Santo J (2000) Use of microbiotests to compare the toxicity of water samples fortified with active ingredients and formulated pesticides. Environ Toxicol 15:401–405. doi: 10.1002/1522-7278(2000)15:5<401::AID-TOX7>3.0.CO;2-H CrossRefGoogle Scholar
  39. Pereira JL, Mendes CD, Gonçalves F (2007) Short- and long-term responses of Daphnia spp. to Propanil exposures in distinct food-supply scenarios. Ecotoxicol Environ Saf 68:386–396. doi: 10.1016/j.ecoenv.2006.10.012 CrossRefGoogle Scholar
  40. Römbke J, Jansch S, Didden W (2005) The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:249–265. doi: 10.1016/j.ecoenv.2005.03.027 CrossRefGoogle Scholar
  41. Schaefer M (2003) Behavioural endpoints in earthworm ecotoxicology—evaluation of different test systems in soil toxicity assessment. J Soils Sediments 3:79–84. doi: 10.1007/BF02991072 CrossRefGoogle Scholar
  42. Schönherr J (2002) A mechanistic analysis of penetration of glyphosate salts across astomatous cuticular membranes. Pest Manag Sci 58:343–351. doi: 10.1002/ps.462 CrossRefGoogle Scholar
  43. Slimak KM (1997) Avoidance response as a sublethal effect of pesticides on Lumbricus terrestris (Oligochaeta). Soil Biol Biochem 29:713–715. doi: 10.1016/S0038-0717(96)00027-2 CrossRefGoogle Scholar
  44. Solomon KR, Thompson DG (2003) Ecological risk assessment for aquatic organisms from over-water uses of Glyphosate. J Toxicol Environ Health B 6:289–324. doi: 10.1080/10937400306468 CrossRefGoogle Scholar
  45. Tariq MI, Afzal S, Hussain I, Sultana N (2007) Pesticide exposure in Pakistan: a review. Environ Int 33:1107–1122. doi: 10.1016/j.envint.2007.07.012 CrossRefGoogle Scholar
  46. Tomlin C (2001) The pesticide manual. British Crop Protection Council, SurreyGoogle Scholar
  47. Tomlin AD, Gore FL (1974) Effects of six insecticides and a fungicide on the numbers and biomass of earthworms in pasture. Bull Environ Contam Toxicol 12:487–492. doi: 10.1007/BF01684987 CrossRefGoogle Scholar
  48. USEPA—United States Environmental Protection Agency (2001). Memorandum: review of environmental fate and ecological effects for the re-registration eligibility decision for propanilGoogle Scholar
  49. Villarroel MJ, Sancho S, Ferrando MD, Andreu E (2003) Acute, chronic and sub-lethal effects of the herbicide propanil on Daphnia magna. Chemosphere 53:857–864. doi: 10.1016/S0045-6535(03)00546-0 CrossRefGoogle Scholar
  50. Weeks JM, Comber DW (2005) Ecological risk assessment of contaminated soil. Mineral Mag 69:601–613. doi: 10.1180/0026461056950274 CrossRefGoogle Scholar
  51. WHO—World Health Organisation (1996). Methomyl—environmental health criteria 178. (http://www.inchem.org/documents/ehc/ehc/ehc178.htm)
  52. Wilson PC, Foos JF (2006) Survey of carbamate and organophosphorous pesticide export from a South Florida (USA) agricultural watershed: implications of sampling frequency on ecological risk estimation. Environ Toxicol Chem 25:2847–2852. doi: 10.1897/06-048.1 CrossRefGoogle Scholar
  53. Yeardley RB, Lazorchak JM, Gast LC (1996) The potential of an earthworm avoidance test for the evaluation of hazardous waste sites. Environ Toxicol Chem 15:1532–1537. doi: 10.1897/1551-5028(1996)015<1532:TPOAEA>2.3.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Joana L. Pereira
    • 1
    Email author
  • Sara C. Antunes
    • 1
  • Bruno B. Castro
    • 1
  • Catarina R. Marques
    • 1
  • Ana M. M. Gonçalves
    • 1
    • 2
  • Fernando Gonçalves
    • 1
  • Ruth Pereira
    • 1
  1. 1.CESAM (Centre for Environmental and Marine Studies) & Department of BiologyUniversity of AveiroAveiroPortugal
  2. 2.IMAR (Institute of Marine Research), Department of ZoologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations