Ecotoxicology

, Volume 18, Issue 1, pp 94–99 | Cite as

Low levels of lead exposure induce oxidative damage and DNA damage in the testes of the frog Rana nigromaculata

Article

Abstract

We have investigated the chronic effects of low concentrations of lead (Pb) on oxidative damage and DNA damage in testes of the frog Rana nigromaculata. Sixty adult male frogs were randomly divided into six groups of ten. Based on the levels of the Integrated Wastewater Discharge Standard (GB 8978-1996) of China, five groups (II–VI) were treated by epidermal absorption with a PbNO3 solution at concentrations of 0.1, 0.2, 0.4, 0.8, 1.6 mg/l, respectively. The first group (I), which served as a control, was treated with distilled water only. Thirty days after treatment, all frogs were sacrificed and the testis tissues removed for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels. DNA damage, including indicators of damage rate, DNA tail length (TL), and DNA tail moment (TM), was also analyzed by comet assays. Our data suggest that MDA levels in all treatment groups and GSH levels in the 0.2–1.6 mg/l Pb groups increased significantly relative to the controls (< 0.01). Treatment with Pb at concentrations >0.4 mg/l also increased DNA damage rate and TM, while TL increased when the Pb level was >0.2 mg/l (< 0.01 for DNA damage rate and TM, P < 0.05 for TL). Positive correlations were also found between DNA damage levels in the testes and MDA levels (r = 0.796 for DNA damage rate, r = 0.811 for TL, r = 0.796 for TM; P < 0.01 for all) as well between MDA and GSH levels (r = 0.455, P < 0.05) in the testes. Results from MDA measurements indicated that Pb-induced DNA damage in the testes of R. nigromaculata was possibly due to oxidative damage. Taken together, we conclude that Pb can induce male reproductive toxicity in R. nigromaculata.

Keywords

DNA damage Male reproductive toxicity Lead Oxidative damage 

References

  1. Ahamed M, Verma S, Kumar A, Siddiqui MKJ (2005) Environmental exposure to lead and its correlation with biochemical indices in children. Sci Total Environ 346:48–55. doi:10.1016/j.scitotenv.2004.12.019 CrossRefGoogle Scholar
  2. Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for for conservation biology? Biol Conserv 125:271–285. doi:10.1016/j.biocon.2005.04.009 CrossRefGoogle Scholar
  3. Berrill M, Bertram S, Pauli B (1997) Effects of pesticides on amphibian embryos and tadpoles. In: Green DM (ed) Amphibians in decline: Canadian studies of a global problem. Society for the Study of Amphibians and Reptiles, St. Louis, pp 57–63Google Scholar
  4. Blaustein AR, Hoffman PD, Hokit DG, Kiesecker JM, Walls SC, Hays JB (1994) UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines. Proc Natl Acad Sci USA 91:1791–1795. doi:10.1073/pnas.91.5.1791 CrossRefGoogle Scholar
  5. Chiesa ME, Rosenberg CE, Fink NE, Salibián A (2006) Serum protein profile and blood cell counts in adult toads Bufo Arenarum (Amphibia: Anura: Bufonidae): effects of sublethal lead acetate. Arch Environ Contam Toxicol 50:384–391. doi:10.1007/s00244-004-0252-4 CrossRefGoogle Scholar
  6. Corn PS (2000) Amphibian declines: review of some current hypotheses. In: Sparling DW, Linder G, Bioshop CA (eds) Ecotoxicology of amphibians and reptiles. SETAC Press, Pensacola, pp 633–696Google Scholar
  7. Danadevi K, Rozati R, Banu BS, Rao PH, Grover P (2003) DNA damage in workers exposed to lead using comet assay. Toxicology 187:183–189. doi:10.1016/S0300-483X(03)00054-4 CrossRefGoogle Scholar
  8. Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150. doi:10.1046/j.1472-4642.2003.00016.x CrossRefGoogle Scholar
  9. Davidson C (2004) Declining downwind: amphibian population declines in California and historical pesticide use. Ecol Appl 14:1892–1902. doi:10.1890/03-5224 CrossRefGoogle Scholar
  10. García-García G, Nandini S, Sarma SSS (2006) Turbidity mitigates lead toxicity to cladocerans (Cladocera). Ecotoxicology 15:425–436. doi:10.1007/s10646-006-0064-6 CrossRefGoogle Scholar
  11. Guo J (2005) The study on DNA damage of freshwater crab (Sinopotamon yangteskiense) resulting from cadmium and lead (in Chinese). MSc thesis. Shangxi University, ShangxiGoogle Scholar
  12. Gurer H, Ozgunes H, Neal R, Spitz DR, Ercal N (1998) Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead exposed rats. Toxicology 128:181–189. doi:10.1016/S0300-483X(98)00074-2 CrossRefGoogle Scholar
  13. Hels T, Buchwald E (2001) The effect of road kills on amphibian populations. Biol Conserv 99:331–340. doi:10.1016/S0006-3207(00)00215-9 CrossRefGoogle Scholar
  14. Jin YP, Liao YJ, Lu CW, Li GX, Yu F, Zhi XP et al (2006) Health effects in children aged 3–6 years induced by environmental lead exposure. Ecotoxicol Environ Saf 63:313–317. doi:10.1016/j.ecoenv.2005.05.011 CrossRefGoogle Scholar
  15. Kats LB, Ferrer RP (2003) Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Divers Distrib 9:99–100. doi:10.1046/j.1472-4642.2003.00013.x CrossRefGoogle Scholar
  16. Kiesecker JM, Blaustein AR, Belden LK (2001) Complex causes of amphibian declines. Nature 410:681–684. doi:10.1038/35070552 CrossRefGoogle Scholar
  17. Lips KR (1999) Mass mortality and population declines of anurans at an upland site in western Panama. Conserv Biol 13:117–125. doi:10.1046/j.1523-1739.1999.97185.x CrossRefGoogle Scholar
  18. Liu HG, Wang Y, Lian LJ, Xu LH (2006a) Tributyltin induces DNA damage as well as oxidative damage in rats. Environ Toxicol 21:166–171. doi:10.1002/tox.20170 CrossRefGoogle Scholar
  19. Liu Y, Zhang YM, Liu JH, Huang DJ (2006b) The role of reactive oxygen species in the herbicide acetochlor-induced DNA damage on Bufo raddei tadpole liver. Aquat Toxicol 78:21–26. doi:10.1016/j.aquatox.2006.01.016 CrossRefGoogle Scholar
  20. Lu AL, Li X, Gu Y, Wright PM, Chang DY (2001) Repair of oxidative DNA damage: mechanisms and functions. Cell Biochem Biophys 35:141–170. doi:10.1385/CBB:35:2:141 CrossRefGoogle Scholar
  21. Middleton EM, Herman JR, Celarier EA, Wilkinson JW, Carey C, Rusin RJ (2001) Evaluating ultraviolet radiation exposure with satellite data at sites of amphibian declines in central and South America. Conserv Biol 15:914–929. doi:10.1046/j.1523-1739.2001.015004914.x CrossRefGoogle Scholar
  22. Morgan LA, Buttemer X (1996) Predation by the non-native fish Gambusia holbrooki on small Litoria aurea and L. dentata tadpoles. Aust Zool 30:143–149Google Scholar
  23. Nystrom P, Hansson J, Mansson J, Sundstedt M, Reslow C, Brostrom A (2007) A documented amphibian decline over 40 years: possible causes and implications for species recovery. Biol Conserv 138:399–411. doi:10.1016/j.biocon.2007.05.007 CrossRefGoogle Scholar
  24. Oakes KD, Sibley PK, Martin JW, Maclean DD, Solomon KR, Mabury SA et al (2005) Short-term exposures of fish to perfluorooctane sulfonate: acute effects of fatty acyl-CoA oxidase activity, oxidative stress, and circulating sex steroids. Environ Toxicol Chem 24:1172–1181. doi:10.1897/04-419.1 CrossRefGoogle Scholar
  25. Olive PL, Banath JP, Durand RE (1990) Haterogeneity in radiation induced DNA damage and repair in tumor and normal cells measured using the “comet assay”. Radiat Res 122:84–90. doi:10.2307/3577587 CrossRefGoogle Scholar
  26. Panadimitriou E, Loumbourdis NS (2002) Exposure of the Rana ridibumda to copper: impact on two biomarkers, lipid peroxidation, and glutathione. Bull Environ Contam Toxicol 69:885–891. doi:10.1007/s00128-002-0142-2 CrossRefGoogle Scholar
  27. Pande M, Flora SJS (2002) Lead induced oxidative damage and its response to combined administration of α-lipoic acid and succimers in rats. Toxicology 177:187–196. doi:10.1016/S0300-483X(02)00223-8 CrossRefGoogle Scholar
  28. Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615. doi:10.1038/19297 CrossRefGoogle Scholar
  29. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischmann DL et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi:10.1126/science.1103538 CrossRefGoogle Scholar
  30. Vogiatzis AK, Loumbourdis NS (1998) Cadmium accumulation in liver and kidneys and hepatic metallothionein and glutathione levels in Rana ridibumda, after exposure to CdCl2. Arch Environ Contam Toxicol 34:64–68. doi:10.1007/s002449900286 CrossRefGoogle Scholar
  31. Yang JM, Arnush M, Chen QY, Wu XD, Pang B, Jiang XZ (2003) Cadmium-induced damage to primary cultures of rat Leydig cells. Reprod Toxicol 17:553–560. doi:10.1016/S0890-6238(03)00100-X CrossRefGoogle Scholar
  32. Yuan J, Liu H, Zhou LH, Zou YL, Lu WQ (2006) Oxidative stress and DNA damage induced by a drinking-water chlorination disinfection byproduct 3-chloro-4-(dichloromethyl)-5- hydroxy- 2(5H)-furanone (MX) in mice. Mutat Res 609:129–136Google Scholar
  33. Zhang YM, Huang DJ, Zhao DQ (2007) Long-term toxicity effects of cadmium and lead on Bufo raddei tadpoles. Bull Environ Contam Toxicol 79:178–183. doi:10.1007/s00128-007-9152-4 CrossRefGoogle Scholar
  34. Zhang YM, Wang YJ, Yu RL, Zhang S, Wu ZB (2008) Effects of heavy metals Cd2+, Pb2+, Zn2+ on DNA damage of loach Misgurnus anguillicaudatus. Front Biol China 3:50–54. doi:10.1007/s11515-008-0012-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.College of Life and Environment SciencesHangzhou Normal UniversityHangzhouPeople’s Republic of China

Personalised recommendations