Ecotoxicology

, Volume 17, Issue 7, pp 623–631 | Cite as

Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems

Article

Abstract

The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems.

Keywords

Brevetoxins Biotoxins PbTx HABs Florida red tide 

Notes

Acknowledgements

Studies from which data were presented were funded by the following agencies: PbTx composition along the south-west Florida coast, FWCC, Grant No. 04089; Aerosolized PbTxs, NIEHS, 5PO-1 ES010594-05; Shellfish NSP toxins, NOAA-ECOHAB Award No. NA030S4780187.

References

  1. Abbott BC, Siger A, Speigelstein M (1975) Toxins from the blooms of Gymnodinium breve. In: LoCicero VR (ed) Proceedings of the first international conference on toxic dinoflagellate blooms. Science and Technology Foundation, Wakefield, MA, pp 355–366Google Scholar
  2. Abraham WM, Bourdelais AJ, Ahmed A, Serebriakov I, Baden DG (2005) Effects of inhaled PbTx in allergic airways: toxin–allergen interactions and pharmacologic intervention. Environ Health Perspect 113:632–637Google Scholar
  3. Abraham A, Plakas SM, Wang Z, Jester ELE, El Said KR, Granade HR et al (2006) Characterization of polar brevetoxin derivatives isolated from Karenia brevis cultures and natural blooms. Toxicon 48:104–115. doi:10.1016/j.toxicon.2006.04.015 CrossRefGoogle Scholar
  4. American Public Health Association (1970) Recommended procedures for the examination of sea water and shellfish, 4th edn. Subcommittee on laboratory methods for the examination of shellfish. American Public Health Association, Washington, DC, pp 61–66Google Scholar
  5. Anderson DM (1994) Red tides. Sci Am 271:62–68CrossRefGoogle Scholar
  6. Backer LC, Kirkpatrick B, Fleming LE, Cheng YS, Pierce R, Bean JA et al (2005) Occupational exposure to aerosolized PbTx during Florida red tide events: impacts on a healthy worker population. Environ Health Perspect 113:644–649Google Scholar
  7. Baden DG (1983) Marine food-borne dinoflagellate toxins. Int Rev Cytol 82:99–150. doi:10.1016/S0074-7696(08)60824-4 CrossRefGoogle Scholar
  8. Baden DG, Mende TJ (1982) Toxicity of two toxins isolated from Ptychodiscus brevis. Toxicon 20:457–461. doi:10.1016/0041-0101(82)90009-5 CrossRefGoogle Scholar
  9. Baden DG, Tomas CR (1988) Variations in major toxins composition for six clones of Ptychodiscus brevis. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science and toxicology. Elsevier, New York, NY, pp 415–418Google Scholar
  10. Baden DG, Mende TJ, Bikhazi G (1982) Bronchoconstriction caused by Florida red tide toxins. Toxicon 20:929–932. doi:10.1016/0041-0101(82)90081-2 CrossRefGoogle Scholar
  11. Baden DG, Flemming LE, Bean JA (1995) Marine toxins. In: DeWolf FA (ed) Handbook of clinical neurology, vol 21. Elsevier, New York, pp 1–34Google Scholar
  12. Baden DG, Bourdelais AJ, Jacocks H, Michelliza S, Naar J (2005) Natural and derivative PbTx: historical background, multiplicity, and effects. Environ Health Perspect 113:621–625Google Scholar
  13. Blanchard C (1975) Bubble scavenging and the water-to-air transfer of organic matter in the sea. In: Baier R (ed) Applied chemistry at protein interfaces, Advance in Chemistry Series. American Chemical Society, Washington, DC, pp 145–360Google Scholar
  14. Bossart GD, Baden DG, Ewing RY, Roberts B, Wright S (1998) Brevetoxicosis in Manatees (Trichechus manatus latirostris) from the 1996 epizootic: gross, histologic, and immunohistochemical features. Toxicol Pathol 26:276–282CrossRefGoogle Scholar
  15. Bourdelais J, Jacobs HM, Wright JLC, Bigwarfe PM, Baden DG (2005) A new polyether ladder compound produced by the dinoflagellate, Karenia brevis. J Nat Prod 68:2–6. doi:10.1021/np049797o CrossRefGoogle Scholar
  16. Buck JD, Pierce RH (1989) Bacteriological aspects of Florida red tides: a revisit and newer observations. Estuar Coast Shelf Sci 29:317–326. doi:10.1016/0272-7714(89)90031-0 CrossRefGoogle Scholar
  17. Catterell WA, Risk M (1981) Toxin T4(6) from Gymnodinium breve (formerly Ptychodiscus brevis) enhances activation of voltage-sensitive sodium channels by veratridine. Mol Pharmacol 19:345–348Google Scholar
  18. Cheng YS, Zhou Y, Irvin CM, Pierce RH, Naar J, Backer LC et al (2005) Characterization of marine aerosol for assessment of human exposure to PbTx. Environ Health Perspect 113:638–643CrossRefGoogle Scholar
  19. Coleman JR, Ramsdell JS (2003) The type B brevetoxin adversely affects development, cardiovascular function, and survival in medaka embryos-PbTx-3 Oryzias research. Environ Health Perspect 111:1920–1925Google Scholar
  20. Douchette GM, Kodama M, Franca S, Gallacher S (1998) Bacterial interactions with harmful algal bloom species: bloom ecology, toxicology and cytology. In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Psysiological ecology of harmful algal blooms. Springer-Verlag, Heidelberg, pp 619–647Google Scholar
  21. Duagbjerg N, Hansen G, Larsen J, Moestrup O (2001) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU r-DNA sequence data: including three new genera of unarmored dinoflagellates. Phycologia 39:302–317Google Scholar
  22. Epstein PR (1995) The role of algal blooms in the spread of human cholera. In: Lassus PG, Arzul E, Gentien P, Marcaillou-Le-Baut C (eds) Harmful marine algal blooms. Lavoisier, Paris, p 846Google Scholar
  23. Fleming LE, Kirkpatrick B, Backer LC, Bean JA, Wanner A, Dalpra D, Tamer R, Zaias J, Cheng YS, Pierce R, Naar J, Abraham Clark R, Zhou Y, Henry MS, Johnson D, Van De Bogart G, Bossart GD, Harrington M, Baden DG (2005) Initial evaluation of the effects of aerosolized Florida red tide toxins (PbTx) in persons with asthma. Environ Health Perspect 113:650–657Google Scholar
  24. Flewelling LJ, Naar JP, Abbott JP, Baden DG, Barros NB, Bossart GD et al (2005) Red tides and marine mammal mortalities. Nature 435:755–756. doi:10.1038/nature435755a CrossRefGoogle Scholar
  25. Florida Fish and Wildlife Conservation Commission (2007) web site: www.myfwc.com
  26. Geraci JR (1989) Clinical investigation of the 1987–88 mass mortality of bottlenose dolphins along the US central and south Atlantic coast. In: Final report to the National Marine Fisheries Service. US Navy Office of Naval Research, and Marine Mammal Commission, Ontario Veterinary College, University of Guelph, Guelph, Ontario, pp 1–63Google Scholar
  27. Guillard RRL (1973) Division rates. In: Stein JR (ed) Handbook of phycological Methods. Cambridge University Press, London, pp 289–311Google Scholar
  28. Gunter G, Williams RH, Davis CC, Smith FGW (1948) Catastrophic mass mortality of marine animals and coincident phytoplankton bloom on the west coast of Florida, November 1946 to August 1947. Ecol Monogr 18:309–324. doi:10.2307/1948575 CrossRefGoogle Scholar
  29. Ingersoll E (1882) On the fish mortality in the Gulf of Mexico. US Nat Mus 4:74–80Google Scholar
  30. Kirkpatrick B, Fleming LE, Backer LC, Bean JA, Tamer R, Kirkpatrick G et al (2006) Environmental exposures to Florida red tides: effects on emergency room respiratory diagnoses admissions. Harmful Algae 5:526–533CrossRefGoogle Scholar
  31. Landsberg JH (1997) The role of harmful algal blooms in shellfish disease. J Shell Res 16:350Google Scholar
  32. Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fisheries Sci 10(2):113–390CrossRefGoogle Scholar
  33. Landsberg JH, Steidinger KA (1998) A historical review of Gymnodinium breve red tides implicated in mass mortalities of the manatee (Trichechus manatus latirostris) in Florida, USA. In: Reguera B, Blanco J, Fernandez ML, Wyatt T (eds) Harmful algae. Xunta de Galicia and Intergovernmental Oceanographic Commission, UNESCO, Paris, pp 97–100Google Scholar
  34. Leverone JR, Blake NJ, Pierce RH, Shumway SE (2006) Effects of the dinoflagellate, Karenia brevis on larvae; development in three species of bivalve mollusk from Florida. Toxicon 48:75–84CrossRefGoogle Scholar
  35. Naar J, Bourdelais A, Tomas C, Kubanek J, Whitney P, Flewelling L et al (2002) A competitive ELISA to detect PbTx from Karenia brevis (formerly Gymnodinium breve) in seawater, shellfish and mammalian body fluid. Environ Health Perspect 110:179–185Google Scholar
  36. O’Shea TJ, Rathbun GB, Bonde RK, Buergelt CD, Odell DK (1991) An epizootic of Florida manatees associated with a dinoflagellate bloom. Mar Mamm Sci 7:165–179. doi:10.1111/j.1748-7692.1991.tb00563.x CrossRefGoogle Scholar
  37. Pierce RH, Henry MS, Proffitt LS, Hasbrouck PA (1990) Red tide toxin (brevetoxin) enrichment in marine aerosol. In: Graneli E, Sundstrom B, Elder E, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, Amsterdam, pp 397–402Google Scholar
  38. Pierce R, Henry M, Blum P, Payne S (2001) Gymnodinium breve toxins without cells: intracellular and extracellular toxins. In: Hallegraeff GM, Blackburn SI, Bolch CJ, Lewis RJ (eds) Harmful algal blooms 2000. IOC of UNESCO, Paris, pp 421–424Google Scholar
  39. Pierce RH, Henry MS, Blum PC, Lyons J, Cheng YS, Yazzie D et al (2003) Brevetoxin concentrations in marine aerosol: human exposure levels during a Karenia brevis harmful algal bloom. Bull Environ Contam Toxicol 70:161–165. doi:10.1007/s00128-002-0170-y CrossRefGoogle Scholar
  40. Pierce RH, Henry MS, Dickey R, Plakas S (2004) NSP Toxins and metabolites in oysters, clams, and whelks. In: Steidinger KA, Landsberg JH, Tomas CR, Vargo GA (eds) Harmful algae 2002. Florida Fish and Wildlife Conservation Commission and International Oceanographic Commission of UNESCO, St. Petersburg, FL, pp 294–296Google Scholar
  41. Pierce RH, Henry MS, Blum PC, Hamel SL, Kirkpatrick B, Cheng YS et al (2005) Brevetoxin composition in water and marine aerosol along a Florida beach: assessing potential human exposure to marine biotoxins. Harmful Algae 4:965–972. doi:10.1016/j.hal.2004.11.004 CrossRefGoogle Scholar
  42. Plakas SM, El Said KR, Jester ELE, Grande HR, Musser SM, Dickey RW (2002) Confirmation of brevetoxin metabolism in the Eastern oyster (Crassostrea virginica) by controlled exposures to pure toxins and Karenia brevis cultures. Toxicon 40:721–729. doi:10.1016/S0041-0101(01)00267-7 CrossRefGoogle Scholar
  43. Plakas SM, Wang Z, El Said K, Jester ELE, Granade HR, Flewelling L et al (2004) Brevetoxin metabolism and elimination in the Eastern oyster (Crassostrea virginica) after controlled exposures to Karenia brevis. Toxicon 44:677–685. doi:10.1016/j.toxicon.2004.07.027 CrossRefGoogle Scholar
  44. Poli MA, Mende TJ, Baden D (1986) PbTx, unique activators of voltage-sensitive sodium channels bind to specific sites in rat synaptosomes. Mol Pharm 1(30):129–135Google Scholar
  45. Poli MA, Musser SM, Dickey RW, Eilers PP, Hall S (2000) Neurotoxic shellfish poisoning and brevetoxin metabolites: a case study from Florida. Toxicon 38:981–993. doi:10.1016/S0041-0101(99)00191-9 CrossRefGoogle Scholar
  46. Quick JA, Henderson GE (1974) Effects of Gynmodinium breve red tides on fishes and birds: a preliminary report on behavior, anatomy, hematology and histopathology. In: Ambroski RL, Hood MA, Miller RR (eds) Proceedings of the Gulf regional symposium on diseases of aquatic animals, Louisiana State University, Louisiana Sea Grant, pp 85–113Google Scholar
  47. Rein KS, Baden DG, Gawley RE (1994) Conformational analysis of the sodium channel modulator brevetoxin a, comparison with brevetoxin B conformations, and an hypothesis about the common pharmacophore of the “site 5” toxins. J Org Chem 59:2101–2106. doi:10.1021/jo00087a027 CrossRefGoogle Scholar
  48. Roberts BS (1979) Occurrence of Gymnodinium breve red tides along the west and east coasts of Florida during 1976 and 1977. In: Taylor DL, Seliger HH (eds) Toxic dinoflagellate blooms. Elsevier North Holland, Inc., New York, pp 199–202Google Scholar
  49. Roberts BS, Henderson GE, Medlyn RA (1979) The effects of Gymnodinium breve toxin on select mollusks and crustaceans. In: Taylor DL, Seliger HH (eds) Toxic dinoflagellate blooms. Elsevier, New York, pp 419–424Google Scholar
  50. Rounsefell GA, Nelson WR (1966) Red tide research summarized to 1964 including an annotated bibliography. Special Scientific Report No. 535, U.S. Dept. of InteriorGoogle Scholar
  51. Sayer A, Qing H, Bourdelais AJ, Baden DG, Gibson JE (2005) The effect of brevenal on brevetoxin-induced DNA damage in human lymphocytes. Arch Toxicol 79:683–688. doi:10.1007/s00204-005-0676-2 CrossRefGoogle Scholar
  52. Shimizu Y, Chou HN, Bando H, VanDuyne G, Clardy JC (1986) Structure of brevetoxin A (gb-1), the most potent toxin in the Florida red tide organism (Gymnodinium breve). J Am Chem Soc 108:514–515. doi:10.1021/ja00263a031 CrossRefGoogle Scholar
  53. Simon JL, Dauer DM (1972) A quantitative evaluation of red tide induced mortalities of benthic invertebrates in Tampa Bay, Florida. Environ Lett 3:229–234Google Scholar
  54. Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Graneli E, Sundstrom B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Academic, NewYork, pp 29–40Google Scholar
  55. Steidinger KA, Baden DG (1984) Toxic marine dinoflagellates. In: Spector DL (ed) Dinoflagellates. Academic, New York, pp 201–299Google Scholar
  56. Steidinger KA, Burklew M, Ingle RM (1973) The effects of Gymnodinium breve toxins on estuarine animals. In: Martin DF, Padilla GM (eds) Marine pharmocognosy: action of marine at the cellular level. Academic, New York, pp 179–202Google Scholar
  57. Steidinger KA, Roberts BS, Tester PA (1995) Florida red tides. Harmful Algae News 12:1–3Google Scholar
  58. Taylor HF (1917) Mortality of fishes on the west coast of Florida. Science 45:367–368. doi:10.1126/science.45.1163.367 CrossRefGoogle Scholar
  59. Tester PA, Steidinger KA (1997) Gymnodinium breve red tide blooms: initiation, transport, and consequences of surface circulation. Limnol Oceanogr 42(Part 2):1039–1051Google Scholar
  60. Tester PA, Turner JT, Shea D (2000) Vectorial transport of toxins from the dinoflagellate Gymnodinium breve through copepods to fish. J Plankton Res 22:47–61. doi:10.1093/plankt/22.1.47 CrossRefGoogle Scholar
  61. Trainer VL, Baden DG (1999) High affinity binding of red tide neurotoxins to marine mammal brain. Aquat Toxicol 46:139–148. doi:10.1016/S0166-445X(98)00125-8 CrossRefGoogle Scholar
  62. Van Dolah FM (2000) Marine algal toxins: origins, health effects, and their increased occurrence. Environ Health Perspect 108:133–141. doi:10.2307/3454638 CrossRefGoogle Scholar
  63. Walker ST (1884) Fish mortality in the Gulf of Mexico. Proc US Natl Mus 6:105–109Google Scholar
  64. Walsh CJ, Luer CA, Noyes DR (2005) Effects of environmental stressors on lymphocyte proliferation in Florida manatees, Trichechus manatus latirostris. Vet Immunol Immunopathol 103:247–256. doi:10.1016/j.vetimm.2004.09.026 CrossRefGoogle Scholar
  65. Wang Z, Plakas SM, El Said K, Jester ELE, Granade HR, Dickey RW (2004) LC/MS analysis of brevetoxin metabolites in the Eastern oyster (Crassostrea virginica). Toxicon 43:455–465. doi:10.1016/j.toxicon.2004.02.017 CrossRefGoogle Scholar
  66. Woodcock AH (1948) Note concerning human respiratory irritation associated with high concentrations of plankton and mass mortalities of marine organisms. J Mar Res 7:56–62Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Mote Marine LaboratorySarasotaUSA

Personalised recommendations