Ecotoxicology

, 17:789 | Cite as

Survival of postfledging Forster’s terns in relation to mercury exposure in San Francisco Bay

  • Joshua T. Ackerman
  • Collin A. Eagles-Smith
  • John Y. Takekawa
  • Samuel A. Iverson
Article

Abstract

We examined factors influencing mercury concentrations in 90 fledgling Forster’s terns (Sterna forsteri) and evaluated whether mercury influenced postfledging survival in San Francisco Bay, California. Mercury concentrations (±SE) in chicks 21–29 days old (just before fledging) were 0.33 ± 0.01 μg g−1 ww for blood and 6.44 ± 0.28 μg g−1 fw for breast feathers. Colony site had an overriding influence on fledgling contamination, however hatching date and age also affected blood, but not feather, mercury concentrations. Blood mercury concentrations decreased by 28% during the 50-day hatching period and increased with chick age by 30% during the last week prior to fledging. Using radio-telemetry, we calculated that cumulative survival during the 35-day postfledging time period was 0.81 ± 0.09 (SE). Postfledging survival rates increased with size-adjusted mass, and cumulative survival probability was 61% lower for terns with the lowest, compared to the highest, observed masses. Conversely, survival was not influenced by blood mercury concentration, time since fledging, sex, or hatch date. Mercury concentrations in breast feathers of fledglings found dead at nesting colonies also were no different than those in live chicks. Our results indicate that colony site, hatching date, and age influenced mercury concentrations in fledgling Forster’s terns, but that mercury did not influence postfledging survival.

Keywords

Fledglings Mercury Postfledglings Survival Telemetry 

Notes

Acknowledgments

This research was funded by the CALFED Bay-Delta Program’s Ecosystem Restoration Program (Grant number ERP-02D-C12) with additional support from the USGS Western Ecological Research Center. We thank Jill Bluso, Cheryl Strong, Ross Wilming, Eli French, Sarah Stoner-Duncan, Angela Rex, Brooke Hill, Stacy Moskal, Joe Northrup, Kristen Dybala, Lani Stinson, Scott Demers, and Terry Adelsbach for field assistance and Robin Keister and Keith Miles for lab analyses. We also thank Clyde Morris, Joy Albertson, Mendel Stewart, Joelle Buffa, Eric Mruz, and the staff at the Don Edwards San Francisco Bay National Wildlife Refuge (Special Use Permits 11640-2005-002 and 11640-2006-006), Carl Wilcox, Larry Wyckoff, John Krause, and the staff of the Eden Landing Ecological Reserve (California Department of Fish and Game), and Nicole Athearn, Cheryl Strong, San Francisco Bay Bird Observatory, and PRBO Conservation Science for logistical support. Early versions of the manuscript were reviewed by Josh Vest, Susan Wainwright-De la Cruz, and two anonymous reviewers. The use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

  1. Ackerman JT, Adams J, Takekawa JY, Carter HR, Whitworth DL, Newman SH et al (2004) Effects of radio transmitters on the reproductive performance of Cassin’s auklets. Wildl Soc Bull 32:1229–1241. doi: 10.2193/0091-7648(2004)032[1229:EOROTR]2.0.CO;2 CrossRefGoogle Scholar
  2. Ackerman JT, Takekawa JY, Orthmeyer DL, Fleskes JP, Yee JL, Kruse KL (2006) Spatial use by wintering greater white-fronted geese relative to a decade of habitat change in California’s Central Valley. J Wildl Manage 70:965–976. doi: 10.2193/0022-541X(2006)70[965:SUBWGW]2.0.CO;2 CrossRefGoogle Scholar
  3. Ackerman JT, Eagles-Smith CA, Heinz GH, Wainwright-De La Cruz SE, Takekawa JY, Adelsbach TL et al (2007a) Mercury in birds of the San Francisco Bay-Delta: trophic pathways, bioaccumulation and ecotoxicological risk to avian reproduction. 2006 Annual Administrative Report to CALFED, U.S. Geological Survey, Western Ecological Research Center, and U.S. Fish and Wildlife Service, Environmental Contaminants Division, 41 ppGoogle Scholar
  4. Ackerman JT, Eagles-Smith CA, Takekawa JY, Demers SA, Adelsbach TL, Bluso JD et al (2007b) Mercury concentrations and space use of pre-breeding American avocets and black-necked stilts in San Francisco Bay. Sci Total Environ 384:452–466. doi: 10.1016/j.scitotenv.2007.04.027 CrossRefGoogle Scholar
  5. Ackerman JT, Takekawa JY, Eagles-Smith CA, Iverson SA (2008a) Mercury contamination and effects on survival of American avocet and black-necked stilt chicks in San Francisco Bay. Ecotoxicology 17:103–116. doi: 10.1007/s10646-007-0164-y CrossRefGoogle Scholar
  6. Ackerman JT, Eagles-Smith CA, Takekawa JY, Bluso JD, Adelsbach TL (2008b) Mercury concentrations in blood and feathers of pre-breeding Forster’s terns in relation to space use of San Francisco Bay habitats. Environ Toxicol Chem 27:897–908. doi: 10.1897/07-230.1 CrossRefGoogle Scholar
  7. Albers PH, Koterba MT, Rossman R, Link WA, French JB, Bennett RS et al (2007) Effects of methylmercury on reproduction in American kestrels. Environ Toxicol Chem 26:1856–1866. doi: 10.1897/06-592R.1 CrossRefGoogle Scholar
  8. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manage 64:912–923. doi: 10.2307/3803199 CrossRefGoogle Scholar
  9. Anderson DR, Link WA, Johnson DH, Burnham KP (2001) Suggestions for presenting the results of data analyses. J Wildl Manage 65:373–378. doi: 10.2307/3803088 CrossRefGoogle Scholar
  10. Arnold JM, Hatch JJ, Nisbet ICT (2006) Effects of egg size, parental quality, and hatch-date on growth and survival of common tern Sterna hirundo chicks. Ibis 148:98–105. doi: 10.1111/j.1474-919X.2006.00487.x CrossRefGoogle Scholar
  11. Berkeley LI, McCarty JP, Wolfenbarger LL (2007) Postfledging survival and movement in dickcissels (Spiza americana): implications for habitat management and conservation. Auk 124:396–409. doi: 10.1642/0004-8038(2007)124[396:PSAMID]2.0.CO;2 CrossRefGoogle Scholar
  12. Bouton SN, Frederick PC, Spalding MG, McGill H (1999) Effects of chronic, low concentrations of dietary methymercury on the behavior of juvenile great egrets. Environ Toxicol Chem 18:1934–1939. doi:10.1897/1551-5028(1999)018<1934:EOCLCO>2.3.CO;2CrossRefGoogle Scholar
  13. Burger J, Gochfeld M (1997) Risk, mercury levels, and birds: relating adverse laboratory effects to field biomonitoring. Environ Res 75:160–172. doi: 10.1006/enrs.1997.3778 CrossRefGoogle Scholar
  14. Burger J, Nisbet ICT, Gochfeld M (1994) Heavy metal and selenium levels in feathers of known-aged common terns (Sterna hirundo). Arch Environ Contam Toxicol 26:351–355. doi: 10.1007/BF00203562 CrossRefGoogle Scholar
  15. Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer-Verlag, New York, USAGoogle Scholar
  16. Collins CT, Doherty PF Jr (2006) Survival estimates for royal terns in southern California. J Field Ornithol 77:3130–3314. doi: 10.1111/j.1557-9263.2006.00057.x CrossRefGoogle Scholar
  17. Conaway CH, Watson EB, Flanders JR, Flegal AR (2004) Mercury deposition in a tidal marsh of south San Francisco Bay downstream of the historic New Almaden mining district, California. Mar Chem 90:175–184. doi: 10.1016/j.marchem.2004.02.023 CrossRefGoogle Scholar
  18. Davis JA, Yee D, Collins JN, Schwarzbach SE, Louma SN (2003) Potential for increased mercury accumulation in the estuary food web. In: Brown LR (ed) Issues in San Francisco Estuary Tidal wetlands restoration. San Francisco Estuary and Watershed Science, Vol. 1, Issue 1 (October 2003), Article 4. <http://repositories.cdlib.org/jmie/sfews/vol1/iss1/art4>
  19. Evers DC, Burgess NM, Champoux L, Hoskins B, Major A, Goodale WM et al (2005) Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology 14:193–221. doi: 10.1007/s10646-004-6269-7 CrossRefGoogle Scholar
  20. Finley MT, Stendell RC (1978) Survival and reproductive success of black ducks fed methyl mercury. Environ Pollut 16:51–63. doi: 10.1016/0013-9327(78)90137-4 CrossRefGoogle Scholar
  21. Fournier F, Karasov WH, Kenow KP, Meyer MW, Hines RK (2002) The oral bioavailability and toxicokinetics of methylmercury in common loons (Gavia immer) chicks. Comp Biochem Physiol Part A 133:703–714CrossRefGoogle Scholar
  22. Gilmer DS, Cowardin LM, Duval RL, Mechlin L, Shaiffer CW, Kuechle VB (1981) Procedures for the use of aircraft in wildlife biotelemetry studies. USDI Fish and Wildlife Service, Resource Publication 140, Washington, DC, USAGoogle Scholar
  23. Harris MP, Frederiksen M, Wanless S (2007) Within- and between-year variation in the juvenile survival of common guillemots (Uria aalge). Ibis 149:472–481. doi: 10.1111/j.1474-919X.2007.00667.x CrossRefGoogle Scholar
  24. Heinz G (1974) Effects of low dietary levels of methyl mercury on mallard reproduction. Bull Environ Contam Toxicol 11:386–392. doi: 10.1007/BF01684947 CrossRefGoogle Scholar
  25. Heinz G (1975) Effects of methylmercury on approach and avoidance behavior of mallard ducklings. Bull Environ Contam Toxicol 13:554–564. doi: 10.1007/BF01685179 CrossRefGoogle Scholar
  26. Heinz GH (1979) Methylmercury: reproductive and behavioral effects on three generations of mallard ducks. J Wildl Manage 43:394–401. doi: 10.2307/3800348 CrossRefGoogle Scholar
  27. Heinz GH, Hoffman DJ (1998) Methylmercury chloride and selenomethionine interactions on health and reproduction in mallards. Environ Toxicol Chem 17:139–145. doi:10.1897/1551-5028(1998)017<0139:MCASIO>2.3.CO;2CrossRefGoogle Scholar
  28. Heinz GH, Hoffman DJ (2003) Embryotoxic thresholds of mercury: estimates from individual mallard eggs. Arch Environ Contam Toxicol 44:257–264. doi: 10.1007/s00244-002-2021-6 CrossRefGoogle Scholar
  29. Heinz GH, Hoffman DJ, Klimstra JD, Stebbins KR, Konrad SL, Erwin CA (2008) Species differences in the sensitivity of avian embryos to methylmercury. Arch Environ Contam Toxicol (in press)Google Scholar
  30. Henny CJ, Hill EF, Hoffman DJ, Spalding MG, Grove RA (2002) Nineteenth century mercury: hazard to wading birds and cormorants of the Carson River, Nevada. Ecotoxicology 11:213–231. doi: 10.1023/A:1016327602656 CrossRefGoogle Scholar
  31. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481. doi: 10.2307/2281868 CrossRefGoogle Scholar
  32. Karasov WH, Kenow KP, Meyer MW, Fournier F (2007) Bioenergetic and pharmacokinetic model for exposure of common loon (Gavia immer) chicks to methylmercury. Environ Toxicol Chem 26:677–685. doi: 10.1897/06-262.1 CrossRefGoogle Scholar
  33. Keedwell RJ (2003) Does fledging equal success? Post-fledging mortality in the black-fronted tern. J Field Ornithol 74:217–221Google Scholar
  34. Kenow KP, Gutreuter S, Hines RK, Meyer MW, Fournier F, Karasov WH (2003) Effects of methyl mercury exposure on the growth of juvenile common loons. Ecotoxicology 12:171–182. doi: 10.1023/A:1022598525891 CrossRefGoogle Scholar
  35. Kenow KP, Grasman KA, Hines RK, Meyer MW, Gendron-Fitzpatrick A, Spalding MG et al (2007) Effects of methylmercury exposure on the immune function of juvenile common loons (Gavia immer). Environ Toxicol Chem 26:1460–1469. doi: 10.1897/06-442R.1 CrossRefGoogle Scholar
  36. Kershner EL, Walk JW, Warner RE (2004) Postfledging movements and survival of juvenile eastern meadowlarks (Sturnella magna) in Illinois. Auk 121:1146–1154. doi: 10.1642/0004-8038(2004)121[1146:PMASOJ]2.0.CO;2 CrossRefGoogle Scholar
  37. King DI, Degraaf RM, Smith ML, Buonaccorsi JP (2006) Habitat selection and habitat-specific survival of fledging ovenbirds (Seiurus aurocapilla). J Zool (Lond) 269:414–421. doi: 10.1111/j.1469-7998.2006.00158.x CrossRefGoogle Scholar
  38. Kojadinovic J, Bustamante P, Churlaud C, Cosson RP, Le Corre M (2007) Mercury in seabird feathers: insight on dietary habits and evidence for exposure levels in the western India Ocean. Sci Total Environ 384:194–204. doi: 10.1016/j.scitotenv.2007.05.018 CrossRefGoogle Scholar
  39. Krementz DG, Nichols JD, Hines JE (1989) Postfledging survival of European starlings. Ecology 70:646–655. doi: 10.2307/1940216 CrossRefGoogle Scholar
  40. Lindén M, Gustafsson L, Pärt T (1992) Selection on fledging mass in the collared flycatcher and the great tit. Ecology 73:336–343. doi: 10.2307/1938745 CrossRefGoogle Scholar
  41. Longcore JR, Dineli R, Haines TA (2007) Mercury and growth of tree swallows at Acadia National Park, and at Orono, Maine, USA. Environ Monit Assess 126:117–127. doi: 10.1007/s10661-006-9325-3 CrossRefGoogle Scholar
  42. Marvin-DiPasquale MC, Agee JL, Bouse RM, Jaffe BE (2003) Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California. Environ Geol 43:260–267Google Scholar
  43. McNicholl MK, Lowther PE, Hall JA (2001) Forster’s tern (Sterna forsteri). In Poole A, Gill F (eds) The birds of North America, No. 595, Acad Nat Sci, Philadelphia, PA and Am Ornithol Union, Washington, DCGoogle Scholar
  44. Mehl KR, Alisauskas RT (2007) King eider (Somateria spectabilis) brood ecology: correlates of duckling survival. Auk 124:606–618. doi: 10.1642/0004-8038(2007)124[606:KESSBE]2.0.CO;2 CrossRefGoogle Scholar
  45. Merrill EH, Hartigan JJ, Meyer MW (2005) Does prey biomass or mercury exposure affect loon chick survival in Wisconsin? J Wildl Manage 69:57–67. doi:10.2193/0022-541X(2005)069<0057:DPBOME>2.0.CO;2CrossRefGoogle Scholar
  46. Meyer MW, Evers DC, Hartigan JJ, Rasmussen PS (1998) Patterns of common loon (Gavia immer) mercury exposure, reproduction, and survival in Wisconsin, USA. Environ Toxicol Chem 17:184–190. doi:10.1897/1551-5028(1998)017<0184:POCLGI>2.3.CO;2CrossRefGoogle Scholar
  47. Monteiro LR, Furness RW (2001) Kinetics, dose-response, excretion, and toxicity of methylmercury in free-living Cory’s shearwater chicks. Environ Toxicol Chem 20:1816–1823. doi:10.1897/1551-5028(2001)020<1816:KDREAT>2.0.CO;2CrossRefGoogle Scholar
  48. Nisbet ICT, Hatfield JS, Link WA, Spendelow JA (1999) Predicting chick survival and productivity of roseate terns from data on early growth. Waterbirds 22:90–97. doi: 10.2307/1521997 Google Scholar
  49. Pelayo JT, Clark RG (2003) Consequences of egg size for offspring survival: a cross-fostering experiment in ruddy ducks (Oxyura jamaicensis). Auk 120:384–393. doi: 10.1642/0004-8038(2003)120[0384:COESFO]2.0.CO;2 CrossRefGoogle Scholar
  50. Pollock KH, Winterstein SR, Bunck CM, Curtis PD (1989) Survival analysis in telemetry studies: the staggered entry design. J Wildl Manage 53:7–15. doi: 10.2307/3801296 CrossRefGoogle Scholar
  51. Rimmer CC, McFarland KP, Evers DC, Miller EK, Aubry Y, Busby D et al (2005) Mercury levels in Bicknell’s thrush and other insectivorous passerine birds in montane forests of the northeastern United States and Canada. Ecotoxicology 14:223–240. doi: 10.1007/s10646-004-6270-1 CrossRefGoogle Scholar
  52. Salinas-Melgoza A, Renton K (2007) Postfledging survival and development of juvenile lilac-crowned parrots. J Wildl Manage 71:43–50. doi: 10.2193/2005-646 CrossRefGoogle Scholar
  53. Sall J, Lehman A, Creighton L (2001) JMP start statistics: a guide to statistics and data analysis using JMP and JMP in software, 2nd edn. Duxbury, Pacific Grove, CA, USAGoogle Scholar
  54. Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–18. doi: 10.1579/0044-7447(2007)36[12:EOEMOT]2.0.CO;2 CrossRefGoogle Scholar
  55. Sepúlveda MS, Williams GE Jr, Frederick PC, Spalding MG (1999) Effects of mercury on health and first-year survival of free-ranging great egrets (Ardea albus) from Southern Florida. Arch Environ Contam Toxicol 37:369–376. doi: 10.1007/s002449900527 CrossRefGoogle Scholar
  56. Spalding MG, Frederick PC, McGill HC, Bouton SN, Richey LJ, Schumacher IM et al (2000a) Histologic, neurologic, and immunologic effects of methylmercury in captive great egrets. J Wildl Dis 36:423–435Google Scholar
  57. Spalding MG, Frederick PC, McGill HC, Bouton SN, McDowell LR (2000b) Methylmercury accumulation in tissues and its effects on growth and appetite in captive great egrets. J Wildl Dis 36:411–422Google Scholar
  58. Spendelow JA, Nichols JD, Hines JE, Lebreton JD, Pradel R (2002) Modelling postfledging survival and age-specific breeding probabilities in species with delayed maturity: a case study of roseate terns at Falkner Island, Connecticut. J Appl Stat 29:385–405. doi: 10.1080/02664760120108764 CrossRefGoogle Scholar
  59. Stienen EW, Brenninkmeijer A (2002) Variation in growth in sandwich tern chicks (Sterna sandvicensis) and the consequences for pre- and post-fledging mortality. Ibis 144:567–576. doi: 10.1046/j.1474-919X.2002.00086.x CrossRefGoogle Scholar
  60. Strong CM, Spear LB, Ryan TP, Dakin RE (2004) Forster’s tern, Caspian tern, and California gull colonies in the San Francisco Bay: habitat use, numbers and trends, 1982–2003. Waterbirds 27:411–423. doi: 10.1675/1524-4695(2004)027[0411:FTCTAC]2.0.CO;2 CrossRefGoogle Scholar
  61. Takekawa JY, Warnock N, Martinelli GM, Miles AK, Tsao DC (2002) Waterbird use of bayland wetlands in the San Francisco Bay Estuary: movements of long-billed dowitchers during winter. Waterbirds 25:93–105. doi: 10.1675/1524-4695(2002)025[0093:OOPGPI]2.0.CO;2 CrossRefGoogle Scholar
  62. Thompson DR, Furness RW (1989) Comparison of the levels of total and organic mercury in seabird feathers. Mar Pollut Bull 20:577–579. doi: 10.1016/0025-326X(89)90361-5 CrossRefGoogle Scholar
  63. Traylor JJ, Alisauskas RT (2006) Effects of intrinsic and extrinsic factors on survival of white-winged scoter (Melanitta fusca deglandi) ducklings. Auk 123:67–81. doi: 10.1642/0004-8038(2006)123[0067:EOIAEF]2.0.CO;2 CrossRefGoogle Scholar
  64. United States Environmental Protection Agency (2000) Method 7473, Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry, Test methods for evaluating solid waste, physical/chemical methods SW 846, Update IVA. US Government Printing Office, Washington, DCGoogle Scholar
  65. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46(Suppl):120–138Google Scholar
  66. Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2003) Ecotoxicology of mercury. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) Handbook of ecotoxicology, 2nd edn. CRC Press LCC, Boca Raton, FL, USA, pp 409–463Google Scholar
  67. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations: modeling, estimation, and decision making. Academic Press. San Diego, CA, USAGoogle Scholar
  68. Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160. doi:10.1897/1551-5028(1998)017<0146:EOMOWA>2.3.CO;2CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Joshua T. Ackerman
    • 1
  • Collin A. Eagles-Smith
    • 1
  • John Y. Takekawa
    • 2
  • Samuel A. Iverson
    • 2
  1. 1.U.S. Geological SurveyWestern Ecological Research Center, Davis Field Station, University of CaliforniaDavisUSA
  2. 2.U.S. Geological SurveyWestern Ecological Research Center, San Francisco Bay Estuary Field StationVallejoUSA

Personalised recommendations