Ecotoxicology

, Volume 17, Issue 5, pp 372–386

Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi

  • Enrique Navarro
  • Anders Baun
  • Renata Behra
  • Nanna B. Hartmann
  • Juliane Filser
  • Ai-Jun Miao
  • Antonietta Quigg
  • Peter H. Santschi
  • Laura Sigg
Article

Abstract

Developments in nanotechnology are leading to a rapid proliferation of new materials that are likely to become a source of engineered nanoparticles (ENPs) to the environment, where their possible ecotoxicological impacts remain unknown. The surface properties of ENPs are of essential importance for their aggregation behavior, and thus for their mobility in aquatic and terrestrial systems and for their interactions with algae, plants and, fungi. Interactions of ENPs with natural organic matter have to be considered as well, as those will alter the ENPs aggregation behavior in surface waters or in soils. Cells of plants, algae, and fungi possess cell walls that constitute a primary site for interaction and a barrier for the entrance of ENPs. Mechanisms allowing ENPs to pass through cell walls and membranes are as yet poorly understood. Inside cells, ENPs might directly provoke alterations of membranes and other cell structures and molecules, as well as protective mechanisms. Indirect effects of ENPs depend on their chemical and physical properties and may include physical restraints (clogging effects), solubilization of toxic ENP compounds, or production of reactive oxygen species. Many questions regarding the bioavailability of ENPs, their uptake by algae, plants, and fungi and the toxicity mechanisms remain to be elucidated.

Keywords

Toxicity Nanoparticles Fullerenes Carbon nanotubes Carbon black Silver nanoparticles TiO2 Organic matter 

References

  1. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B: Bioint 28:313–318CrossRefGoogle Scholar
  3. Aiken J (1884) On the formation of small clear spaces in dusty air. Trans Roy Soc Edinburgh 30:337–368Google Scholar
  4. Andrievsky GV, Klochkov VK, Bordyuh AB, Dovbeshko GI (2002) Comparative analysis of two aqueous-colloidal solutions of C-60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy. Chem Phys Lett 364:8–17CrossRefGoogle Scholar
  5. Asada K (1992) Ascorbate peroxidase - a hydrogen peroxide-scavenging Enzyme in Plants. Physiol Plant 85:235–241CrossRefGoogle Scholar
  6. Badireddy AR, Hotze EM, Chellam S, Alvarez P, Wiesner MR (2007) Inactivation of bacteriophages via photosensitization of fullerol nanoparticles. Environ Sci Technol 41:6627–6632CrossRefGoogle Scholar
  7. Baun A, Sørensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Tox 86:379–387CrossRefGoogle Scholar
  8. Biswas P, Wu CY (2005) 2005 Critical review: nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746Google Scholar
  9. Borm PJA (2002) Particle toxicology: from coal mining to nanotechnology. Inhal Toxicol 14:311–324CrossRefGoogle Scholar
  10. Boulas P, Kutner W, Jones MT, Kadish KM (1994) Bucky(basket)ball - stabilization of electrogenerated C-60(center-dot-) radical monoanion in water by means of cyclodextrin inclusion chemistry. J Phys Chem 98:1282–1287CrossRefGoogle Scholar
  11. Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553CrossRefGoogle Scholar
  12. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381CrossRefGoogle Scholar
  13. Buffle J, Wilkinson KJ, Stoll S, Filella M, Zhang JW (1998) A generalized description of aquatic colloidal interactions: The three-colloidal component approach. Environ Sci Technol 32:2887–2899CrossRefGoogle Scholar
  14. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotech 21:1166–1170CrossRefGoogle Scholar
  15. Chang MCO, Chow JC, Watson JG, Hopke PK, Yi SM, England GC (2004) Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. J Air Waste Manage Assoc 54:1494–1505Google Scholar
  16. Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309:126–134CrossRefGoogle Scholar
  17. Chen KL, Mylon SE, Elimelech M (2007a) Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir 23:5920–5928CrossRefGoogle Scholar
  18. Chen W, Duan L, Zhu D (2007b) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41:8295–8300Google Scholar
  19. Da Silva LC, Oliva MA, Azevedo AA, De Araujo JM (2006) Responses of restinga plant species to pollution from an iron pelletization factory. Water, Air, Soil Pollut 175:241–256CrossRefGoogle Scholar
  20. Degryse F, Smolders E, Parker DR (2006) Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. Plant Soil 289:171–185CrossRefGoogle Scholar
  21. Derjaguin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim 14:633–662Google Scholar
  22. Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity - a review. Plant Soil Environ 53:193–200Google Scholar
  23. Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski C (2007) A versatile strategy for quantum dot ligand exchange. J Am Chem Soc 129:482–483CrossRefGoogle Scholar
  24. Dunphy Guzman KA, Finnegan MP, Banfield JF (2006a) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693CrossRefGoogle Scholar
  25. Dunphy Guzman KA, Taylor MR, Banfield JF (2006b) Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000–2004. Environ Sci Technol 40:1401–1407CrossRefGoogle Scholar
  26. Elimelech M, Omelia CR (1990) Effect of particle-size on collision efficiency in the deposition of brownian particles with electrostatic energy barriers. Langmuir 6:1153–1163CrossRefGoogle Scholar
  27. Fernandes T, Nielsen H, Burridge T, Stone V (2007) Toxicity of nanoparticles to embryos of the marine macroalgae Fucus serratus. 2nd International Conference on the Environmental Effects of Nanoparticles and Nanomaterials, London, EnglandGoogle Scholar
  28. Ferretti R, Stoll S, Zhang JW, Buffle J (2003) Flocculation of hematite particles by a comparatively large rigid polysaccharide: schizophyllan. J Colloid Interface Sci 266:328–338CrossRefGoogle Scholar
  29. Filella M, Buffle J (1993) Factors controlling the stability of submicron colloids in natural-waters. Colloid Surf A-Physicochem Eng Asp 73:255–273CrossRefGoogle Scholar
  30. Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4–64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J Microsc 198:246–259CrossRefGoogle Scholar
  31. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838CrossRefGoogle Scholar
  32. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490CrossRefGoogle Scholar
  33. Friedlander SK, Pui DYH (2004) Emerging issues in nanoparticle aerosol science and technology. J Nanopart Res 6:313–314CrossRefGoogle Scholar
  34. Fujino T, Itoh T (1998) Changes in pectin structure during epidermal cell elongation in pea (Pisum sativum) and its implications for cell wall architecture. Plant Cell Physiol 39:1315–1323Google Scholar
  35. Giammar DE, Maus CJ, Xie LY (2007) Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Env Eng Sci 24:85–95CrossRefGoogle Scholar
  36. Gotovac S, Hattori Y, Noguchi D, Miyamoto J, Kanamaru M, Utsumi S, Kanoh H, Kaneko K (2006) Phenanthrene adsorption from solution on single wall carbon nanotubes. J Phys Chem B 110:16219–16224CrossRefGoogle Scholar
  37. Gotovac S, Honda H, Hattori Y, Takahashi K, Kanoh H, Kaneko K (2007) Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett 7:583–587CrossRefGoogle Scholar
  38. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172CrossRefGoogle Scholar
  39. Harrison P (ed) (2007) Emerging challenges: nanotechnology and the environment. GEO Year Book 2007. United Nations Environment Programme (UNEP), Nairobi, Kenya, pp 61–68. ISBN 978-92-807-2768-9Google Scholar
  40. Heredia A, Guillen R, Jimenez A, Fernandezbolanos J (1993) Plant-cell wall structure. Revista Espanola De Ciencia Y Tecnologia De Alimentos 33:113–131Google Scholar
  41. Hiemstra T, Venema P, Van Riemsdijk WH (1996) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle. J Colloid Interface Sci 184:680–692CrossRefGoogle Scholar
  42. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146CrossRefGoogle Scholar
  43. Hinds WC (1999) Aerosol technology: properties, behavior, and measurements of airborne particles. Wiley Interscience, New YorkGoogle Scholar
  44. Hong JL, Otaki M (2006) Association of photosynthesis and photocatalytic inhibition of algal growth by TiO2. J Biosci Bioeng 101:185–189CrossRefGoogle Scholar
  45. Hristovski K, Baumgardner A, Westerhoff P (2007) Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media. J Hazard Mater 147:265–274CrossRefGoogle Scholar
  46. Hu CG, Yang CH, Hu SS (2007) Hydrophobic adsorption of surfactants on water-soluble carbon nanotubes: a simple approach to improve sensitivity and antifouling capacity of carbon nanotubes-based electrochemical sensors. Electrochim 9:128–134CrossRefGoogle Scholar
  47. Huang CP, Cha DK, Ismat SS (2005) Progress report: short-term chronic toxicity of photocatalytic nanoparticles to bacteria, algae, and zooplankton. University of DelawareGoogle Scholar
  48. Hug SJ, Sulzberger B (1994) In situ Fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase. Langmuir 10:3587–3597CrossRefGoogle Scholar
  49. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13:225–232CrossRefGoogle Scholar
  50. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983CrossRefGoogle Scholar
  51. Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184CrossRefGoogle Scholar
  52. Imahori H, Mori Y, Matano Y (2003) Nanostructured artificial photosynthesis. J Photochem Photobiol C-Photochem Rev 4:51–83CrossRefGoogle Scholar
  53. Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273CrossRefGoogle Scholar
  54. Jeong CH, Hopke PK, Chalupa D, Utell M (2004) Characteristics of nucleation and growth events of ultrafine particles measured in Rochester, NY. Environ Sci Technol 38:1933–1940CrossRefGoogle Scholar
  55. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383CrossRefGoogle Scholar
  56. Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260:89–94CrossRefGoogle Scholar
  57. Kallay N, Zalac S (2002) Stability of nanodispersions: a model for kinetics of aggregation of nanoparticles. J Colloid Interface Sci 253:70–76CrossRefGoogle Scholar
  58. Karajanagi SS, Kim DY, Kane RS, Dordick JS (2004) Enzyme-nanotube conjugates as functional nanomaterials. Abstr Pap Am Chem Soc 227:U890–U890Google Scholar
  59. Kim SC, Lee DK (2005) Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchem J 80:227–232CrossRefGoogle Scholar
  60. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotech Biol Med 3:95–101CrossRefGoogle Scholar
  61. Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol 69:4205–4213CrossRefGoogle Scholar
  62. Knauer K, Sobek A, Bucheli TD (2007) Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon. Aquat Toxicol 83:143–148CrossRefGoogle Scholar
  63. Knox JP (1995) The extracellular-matrix in higher-plants. 4. Developmentally-regulated proteoglycans and glycoproteins of the plant-cell surface. FASEB J 9:1004–1012Google Scholar
  64. Kormann C, Bahnemann DW, Hoffmann MR (1991) Photolysis of chloroform and other organic-molecules in aqueous TiO2 suspensions. Environ Sci Technol 25:494–500CrossRefGoogle Scholar
  65. Kostner B (2001) Evaporation and transpiration from forests in Central Europe relevance of patch-level studies for spatial scaling. Meteorol Atmos Physics 76:69–82CrossRefGoogle Scholar
  66. Kretzschmar R, Sticher H (1997) Transport of humic-coated iron oxide colloids in a sandy soil: influence of Ca2+ and trace metals. Environ Sci Technol 31:3497–3504CrossRefGoogle Scholar
  67. Kulmala M (2003) How particles nucleate and grow. Science 302:1000–1001CrossRefGoogle Scholar
  68. Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry PH (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176CrossRefGoogle Scholar
  69. Kus M, Gernjak W, Ibanez PF, Rodriguez SM, Galvez JB, Icli S (2006) A comparative study of supported TiO2 as photocatalyst in water decontamination at solar pilot plant scale. J Sol Energ Eng-Trans Asme 128:331–337CrossRefGoogle Scholar
  70. Kuzma J, VerHage P (2006) Nanotechnology in agriculture and food production - anticipated applications. Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies, Washington, DCGoogle Scholar
  71. Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169CrossRefGoogle Scholar
  72. Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382CrossRefGoogle Scholar
  73. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–50CrossRefGoogle Scholar
  74. Liu AH, Honma I, Ichihara M, Zhou HS (2006) Poly(acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water: definitive spectroscopic properties. Nanotechnol 17:2845–2849CrossRefGoogle Scholar
  75. Luetz-Meindl U, Luetz C (2006) Analysis of element accumulation in cell wallattached and intracellular particles of snow algae by EELS and ESI. Micron 37:452–458CrossRefGoogle Scholar
  76. Luther GW, Rickard DT (2005) Metal sulfide cluster complexes and their biogeochemical importance in the environment. J Nanopart Res 7:389–407CrossRefGoogle Scholar
  77. Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366CrossRefGoogle Scholar
  78. Madigan MT, Martinko JM, Parker J (2003) Brock biology of microorganisms. Prentice Hall/Pearson Higher Education Group, Upper Saddle River, NJGoogle Scholar
  79. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337CrossRefGoogle Scholar
  80. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492CrossRefGoogle Scholar
  81. Mandal S, Gole A, Lala N, Gonnade R, Ganvir V, Sastry M (2001) Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds. Langmuir 17:6262–6268CrossRefGoogle Scholar
  82. Masciangioli T, Zhang WX (2003) Environmental technologies at the nanoscale. Environ Sci Technol 37:102A–108AGoogle Scholar
  83. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health-Part A 67:87–107CrossRefGoogle Scholar
  84. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269CrossRefGoogle Scholar
  85. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microb Rev 12:147–179Google Scholar
  86. Metcalfe AM, Stoll S, Burd A (2006) The effect of inhomogeneous stickiness on polymer aggregation. J Colloid Interface Sci 298:629–638CrossRefGoogle Scholar
  87. Miao AJ, Quigg A, Schwehr K, Xu C, Santschi P (2007) Engineered silver nanoparticles (ESNs) in coastal marine environments: bioavailability and toxic effects to the phytoplankton Thalassiosira weissflogii. 2nd International conference on the environmental effects of nanoparticles and nanomaterials, 24th 25th September, London UKGoogle Scholar
  88. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976CrossRefGoogle Scholar
  89. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–1382CrossRefGoogle Scholar
  90. Morawska L, Thomas S, Gilbert D, Greenaway C, Rijnders E (1999) A study of the horizontal and vertical profile of submicrometer particles in relation to a busy road. Atmos Environ 33:1261–1274CrossRefGoogle Scholar
  91. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  92. Munro CH, Smith WE, Garner M, Clarkson J, White PC (1995) Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance raman-scattering. Langmuir 11:3712–3720CrossRefGoogle Scholar
  93. Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Tot Environ 165:155–164CrossRefGoogle Scholar
  94. Navarro E, Piccapietra F, Wagner B, Kägi R, Odzak N, Sigg L, Behra R (2007) Toxicity mechanisms of silver nanoparticles to Chlamydomonas reinhardtii. 2nd International conference on the environmental effects of nanoparticles and nanomaterials (oral presentation), London, UKGoogle Scholar
  95. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  96. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279CrossRefGoogle Scholar
  97. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22CrossRefGoogle Scholar
  98. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang CM, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230CrossRefGoogle Scholar
  99. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang YH, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271CrossRefGoogle Scholar
  100. Oberdörster G (2007) Nanoparticles and the brain: cause for concern? Amino Acids 33 (3):XXVIII–XXVIIIGoogle Scholar
  101. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839Google Scholar
  102. Ojamae L, Aulin C, Pedersen H, Kall PO (2006) IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. J Colloid Interface Sci 296:71–78CrossRefGoogle Scholar
  103. Ovecka M, Lang I, Baluska F, Ismail A, Illes P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54CrossRefGoogle Scholar
  104. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  105. Pappa A, Franco R, Schoneveld O, Galanis A, Sandaltzopoulos R, Panayiotidis MI (2007) Sulfur-containing compounds in protecting against oxidant-mediated lung diseases. Curr Med Chem 14:2590–2596CrossRefGoogle Scholar
  106. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Radler J, Natile G, Parak WJ (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett 4:703–707CrossRefGoogle Scholar
  107. Peller JR, Whitman RL, Griffith S, Harris P, Peller C, Scalzitti J (2007) TiO2 as a photocatalyst for control of the aquatic invasive alga, Cladophora, under natural and artificial light. J Photochem Photobiol A 186:212–217CrossRefGoogle Scholar
  108. Ridley MK, Hackley VA, Machesky ML (2006) Characterization and surface-reactivity of nanocrystalline anatase in aqueous solutions. Langmuir 22:10972–10982CrossRefGoogle Scholar
  109. Roco MC (2005) Environmentally responsible development of nanotechnology. Environ Sci Technol 39:106A–112AGoogle Scholar
  110. Rodriguez-Moya M (2007) Inactivation of virus in water by nanoparticles under UV irradiation. Annual meeting, Salt Lake City, UT, USAGoogle Scholar
  111. Santschi PH (2005) Marine colloids. WileyGoogle Scholar
  112. Santschi PH, Balnois E, Wilkinson KJ, Zhang JW, Buffle J, Guo LD (1998) Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy. Limnol Oceanogr 43:896–908Google Scholar
  113. Schauer JJ, Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1996) Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos Environ 30:3837–3855CrossRefGoogle Scholar
  114. Schindler PW, Stumm W (1987) The surface chemistry of oxides, hydroxides and oxide minerals. In: Stumm W (ed) Aquatic surface chemistry. Wiley, New York, pp. 83–110Google Scholar
  115. Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365CrossRefGoogle Scholar
  116. Science Policy Section (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society & The Royal Academy of Engineering, London, ISBN 0 85403 604 0Google Scholar
  117. Sehgal A, Lalatonne Y, Berret JF, Morvan M (2005) Precipitation-redispersion of cerium oxide nanoparticles with poly(acrylic acid): Toward stable dispersions. Langmuir 21:9359–9364CrossRefGoogle Scholar
  118. Shi JP, Evans DE, Khan AA, Harrison RM (2001) Sources and concentration of nanoparticles (<10 nm diameter) in the urban atmosphere. Atmos Environ 35:1193–1202CrossRefGoogle Scholar
  119. Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113:947–955CrossRefGoogle Scholar
  120. Smoluchowski M (1917) Versuch einer mathematischen Theorie de Koagulationkinetic Kolloider Lösungen. Z Phys Chem 92:129Google Scholar
  121. Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71:307–317CrossRefGoogle Scholar
  122. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  123. Stanier CO, Khlystov AY, Pandis SN (2004) Nucleation events during the Pittsburgh air quality study: description and relation to key meteorological, gas phase, and aerosol parameters. Aerosol Sci Tech 38:253–264CrossRefGoogle Scholar
  124. Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Starched carbon nanotubes. Angew Chemie-Int Ed 41:2508–2512CrossRefGoogle Scholar
  125. Stone L, Weisburd RSJ (1992) Positive feedback in aquatic ecosystems. Trends Ecol Evol 7:263–267CrossRefGoogle Scholar
  126. Sugunan A, Melin P, Schnurer J, Hilborn JG, Dutta J (2007) Nutrition-driven assembly of colloidal nanoparticles: growing fungi assemble gold nanoparticles as microwires. Adv Mater 19:77–77CrossRefGoogle Scholar
  127. Sun HW, Zhang XZ, Niu Q, Chen YS, Crittenden JC (2007) Enhanced accumulation of arsenate in carp in the presence of titanium dioxide nanoparticles. Water, Air, Soil Pollut 178:245–254CrossRefGoogle Scholar
  128. Tenhunen JD, Mauser W, Lenz R (eds) (2001) Ecological studies 147: ecosystems approaches to landscpae management in Central Europe. Springer Verlag, Berlin, p 652Google Scholar
  129. Terashima M, Nagao S (2007) Solubilization of [60] fullerene in water by aquatic humic substances. Chem Lett 36:302–303CrossRefGoogle Scholar
  130. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85CrossRefGoogle Scholar
  131. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  132. Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int Biodeterior Biodegr 60:96–102CrossRefGoogle Scholar
  133. Wang IC, Tai LA, Lee DD, Kanakamma PP, Shen CKF, Luh TY, Cheng CH, Hwang KC (1999) C-60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. J Med Chem 42:4614–4620CrossRefGoogle Scholar
  134. Wang Y, Wong JF, Teng XW, Lin XZ, Yang H (2003) “Pulling” nanoparticles into water: phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of alpha-cyclodextrin. Nano Lett 3:1555–1559CrossRefGoogle Scholar
  135. Wang D, Lu J, Lai L, Ni M, Mei WN, Li G, Nagase S, Maeda Y, Akasaka T, Gao Z, Zhou Y (2007) Effects of hole doping on selectivity of naphthalene towards single-wall carbon nanotubes. Comput Math Sci 40:354–358CrossRefGoogle Scholar
  136. Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433CrossRefGoogle Scholar
  137. Wessels JGH (1993) Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413CrossRefGoogle Scholar
  138. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345CrossRefGoogle Scholar
  139. Yamakoshi YN, Yagami T, Fukuhara K, Sueyoshi S, Miyata N (1994) Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J Chem Soc -Chem Commun 4:517–518CrossRefGoogle Scholar
  140. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132CrossRefGoogle Scholar
  141. Yu WW, Chang E, Falkner JC, Zhang JY, Al-Somali AM, Sayes CM, Johns J, Drezek R, Colvin VL (2007) Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J Am Chem Soc 129:2871–2879CrossRefGoogle Scholar
  142. Yue ZR, Economy J (2005) Nanoparticle and nanoporous carbon adsorbents for removal of trace organic contaminants from water. J Nanopart Res 7:477–487CrossRefGoogle Scholar
  143. Zemke-White WL, Clements KD, Harris PJ (2000) Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. J Exp Mar Bio Ecol 245:57–68CrossRefGoogle Scholar
  144. Zhang WX (2003) Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  145. Zhang KM, Wexler AS (2004) Evolution of particle number distribution near roadways - Part I: analysis of aerosol dynamics and its implications for engine emission measurement. Atmos Environ 38:6643–6653CrossRefGoogle Scholar
  146. Zhang TR, Ge JP, Hu YP, Yin YD (2007a) A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 7:3203–3207CrossRefGoogle Scholar
  147. Zhang XZ, Sun HW, Zhang ZY, Niu Q, Chen YS, Crittenden JC (2007b) Enhanced bioaccumulation of cadmium in carp in the presence of titanium dioxide nanoparticles. Chemosphere 67:160–166CrossRefGoogle Scholar
  148. Zhao XU, Li ZW, Chen Y, Shi LY, Zhu YF (2007) Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J Mol Catal A-Chem 268:101–106CrossRefGoogle Scholar
  149. Zheng L, Hong FS, Lu SP, Liu C (2005) Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach. Biol Trace Elem Res 104:83–91CrossRefGoogle Scholar
  150. Zhu YF, Hinds WC, Kim S, Shen S, Sioutas C (2002a) Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ 36:4323–4335CrossRefGoogle Scholar
  151. Zhu YF, Hinds WC, Kim S, Sioutas C (2002b) Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manage Assoc 52:1032–1042Google Scholar
  152. Zhu SQ, Oberdörster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C-60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:S5–S9CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Enrique Navarro
    • 1
    • 2
  • Anders Baun
    • 3
  • Renata Behra
    • 1
  • Nanna B. Hartmann
    • 3
  • Juliane Filser
    • 4
  • Ai-Jun Miao
    • 5
  • Antonietta Quigg
    • 5
  • Peter H. Santschi
    • 5
  • Laura Sigg
    • 1
  1. 1.Swiss Federal Institute of Aquatic Science and Technology (Eawag)DubendorfSwitzerland
  2. 2.Instituto Pirenaico de Ecología-CSICZaragozaSpain
  3. 3.Department of Environment EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  4. 4.General and Theoretical Ecology (UFT)University of BremenBremenGermany
  5. 5.Department of Marine Science/BiologyTexas A&M UniversityTXUSA

Personalised recommendations