, Volume 16, Issue 1, pp 15–28 | Cite as

Endocrine disruption in nematodes: effects and mechanisms

  • Sebastian Höss
  • Lennart Weltje


This paper reviews the current knowledge on endocrine disruption in nematodes. These organisms have received little attention in the field of ecotoxicology, in spite of their important role in aquatic ecosystems. Research on endocrine regulation and disruption in nematodes, especially the more recent studies, concentrate mainly on one species, Caenorhabditis elegans. Although an endocrine system is not known in nematodes, there is evidence that many processes are regulated via hormonal pathways. As vertebrate hormones, such as steroids, may have endocrine functions in nematodes as well, endocrine disrupting chemicals (EDCs) defined for vertebrates may also be able to influence nematodes. The studies that are reviewed here, and own data showed that potential EDCs can affect nematodes on all organizational levels, from molecules to communities. It is concluded that nematodes, notably its prominent species C. elegans, are a promising organism group for the development of biomonitoring tools, provided that more mechanistic evidence is gathered on hormonal processes within these animals.


Caenorhabditis elegans Endocrine disruption Gene expression Nematodes Reproduction Review 


  1. Aguinaldo AM, Turbeville JM, Linford JM, Rivera MC, Gary JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, insects, and other moulting animals. Nature 387:489–493Google Scholar
  2. Antebi A, Yeh W-H, Tait D, Hedgecock EM, Riddle DL (2000) daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 14:1512–1527Google Scholar
  3. Austen MC, McEvoy AJ (1997) Experimental effects of tributyltin (TBT) contaminated sediment on a range of meiobenthic communities. Environ Pollut 96:435–444Google Scholar
  4. Beare MH (1997) Fungal and bacterial pathways of organic matter decomposition and nitrogen mineralization in arable soil. In: Brussaard L, Ferrara-Cerrato R (eds) Soil ecology in sustainable agricultural systems. Lewis Publisher, Boca-Raton, pp 37–70Google Scholar
  5. Beier S, Bolley M, Traunspurger W (2004) Predator–prey interactions between Dugesia gonocephala and free-living nematodes. Freshw Biol 49:77–86Google Scholar
  6. Bennie DT (1999) Review of the environmental occurrence of alkylphenols and alkylphenolethoxylates. Water Qual Res J Can 43:79–122Google Scholar
  7. Bottjer KP, Weinstein PP, Thompson MJ (1985) Effects of azasteroid on growth, development and reproduction of the free-living nematodes Caenorhabditis briggsae and Panagrellus redivivus. Comp Biochem Physiol B 82:99–106Google Scholar
  8. Calabrese EJ, McCarthy ME, Kenyon E (1987) The occurrence of chemically induced hormesis. Health Phys 52:531–541CrossRefGoogle Scholar
  9. Carmi I, Kopczynski JB, Meyer BJ (1998) The nuclear hormone receptor SEX-1 is an X-chromosome signal that determines nematode sex. Nature 396:168–173Google Scholar
  10. C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018Google Scholar
  11. Chitwood DJ (1999) Biochemistry and function of nematode steroids. Crit Rev Biochem Mol Biol 34:273–284Google Scholar
  12. Chitwood DJ, Feldlaufer MF (1990) Ecdysteroids in axenically propagated Caenorhabditis elegans and culture medium. J Nematol 22:598–607Google Scholar
  13. Chitwood DJ, Lusby WR, Lozano R, Thompson MJ, Svoboda MA (1984) Sterol metabolism in the nematode Caenorhabditis elegans. Lipids 19:500–506Google Scholar
  14. Cleator M, Delves CJ, Howells RE, Rees HH (1987) Identity and tissue localization of free and conjugated ecdysteroids in adults of Dirofilaria immitis and Ascaris suum. Mol Biochem Parasitol 25:93–105Google Scholar
  15. Coull BC, Greenwood JG, Fielder DR, Coull BA (1995) Subtropical Australian juvenile fish eat meiofauna: experiments with winter whiting Sillago maculata and observations on other species. Mar Ecol Prog Ser 125:13–19Google Scholar
  16. Custodia N, Won SJ, Novillo A, Wieland M, Li C, Callard IP (2001) Caenorhabditis elegans as an environmental monitor using DNA microarray analysis. Ann NY Acad Sci 948:32–42CrossRefGoogle Scholar
  17. Davey KG (1966) Neurosecretion and molting in some parasitic nematodes. Am Zool 6:243–249Google Scholar
  18. Davey KG (1971) Molting in parasitic nematodes, Phocanema decipiens. VI. The mode of action of insect juvenile hormone and farnesyl ether. Int J Parasitol 1:61–66Google Scholar
  19. Davey KG (1988) Endocrinology of nematodes. In: Laufer H, Downer RGH (eds) Endocrinology of selected invertebrate types. Alan R. Liss, Inc., New York, pp 63–86Google Scholar
  20. Davey KG, Kan SP (1968) Molting in a parasitic nematode, Phocanema decipiens. IV. Ecdysis and its control. Can J Zool 46:893–898Google Scholar
  21. Davies KA, Fischer JM (1994) On hormonal control of moulting in Aphelenchus avenae (Nematoda: Aphelenchida). Int J Parasitol 24:649–655Google Scholar
  22. Dennis RD (1977) On ecdysone-binding proteins and ecdysone-like material in nematodes. Int J Parasitol 7:181–188Google Scholar
  23. Dropkin VH, Lower WR, Acedo J (1971) Growth inhibition of Caenorhabditis elegans and Panagrellus redivivus by selected mammalian and insect hormones. J Nematol 3:349–355Google Scholar
  24. Fenchel T (1978) The ecology of micro and meiobenthos. Annu Rev Ecol Syst 9:99–121Google Scholar
  25. Fleming MW (1985a) Ascaris suum: role of ecdysteroids in molting. Exp Parasitol 59:207–210Google Scholar
  26. Fleming MW (1985b) Steroidal enhancement of growth in parasitic larvae of Ascaris suum: validation of a bioassay. J Exp Zool 233:229–233Google Scholar
  27. Fleming MW (1987) Ecdysteroids during embryonation of eggs of Ascaris suum. Comp Biochem Physiol A 87:803–805Google Scholar
  28. Fleming MW (1993) Ecdysteroids during development in the ovine parasitic nematode, Haemonchus contortus. Comp Biochem Physiol B 104:653–655Google Scholar
  29. Fleming MW (1997) Nematoda. In: Adams TS (ed) Progress in reproductive endocrinology [vol VIII in Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates]. Wiley, New York, pp 55–60Google Scholar
  30. Fodor A, Timar T (1989) Effects of precocene analogs on the nematode Caenorhabditis remanei (var. Bangalorensis) 2. Competitions with a juvenile hormone analogue (methoprene). Gen Comp Endocrinol 74:32–44Google Scholar
  31. Fodor A, Deak P, Kiss I (1982) Competition between juvenile hormone antagonist precocene II and juvenile hormone analogue methoprene in the nematode Caenorhabditis elegans. Gen Comp Endocrinol 46:99–109Google Scholar
  32. Fodor A, Timar T, Kiss I, Hostafi F, Varga E, Soos J, Sebok P (1989) Effects of precocene analogs on the nematode Caenorhabditis remanei (var. Bangalorensis) 1. Structure/activity relations. Gen Comp Endocrinol 74:18–31Google Scholar
  33. Frand AR, Russel S, Ruvkun G (2005) Functional genomic analysis of C. elegans molting. PLoS Biol 3:1719–1733Google Scholar
  34. Garvin C, Holdeman R, Strome S (1998) The phenotype of mes-2, mes-3, mes-4 and mes-6, maternal effect genes required for survival of the germline in Caenorhabditis elegans, is sensitive to chromosome dosage. Genetics 148:167–185Google Scholar
  35. Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A (2001) A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell 1:841–851Google Scholar
  36. Gersch M, Scheffel H (1958) Sekretorisch tätige Zellen im Nervensystem von Ascaris. Naturwissenschaften 45:345–346Google Scholar
  37. Gibb KS, Fisher JM (1989) Factors affecting the fourth moult of Contortylenchus grandicolli (Nematoda: Allantonematidae) to the free-living sexual forms. Nematologica 35:125–128CrossRefGoogle Scholar
  38. Gissendanner CR, Sluder AE (2000) nhr-25, the Caenorhabditis elegans ortholog of ftz-f1, is required for epidermal and somatic gonad development. Dev Biol 221:259–272Google Scholar
  39. Gissendanner CR, Crossgrove K, Kraus KA, Maina CV, Sluder AE (2004) Expression and function of conserved nuclear receptor genes in Caenorhabditis elegans. Dev Biol 266:399–416Google Scholar
  40. Goldstein P (1986) Nuclear aberrations and loss of synaptonemal complexes in response to diethylstilbestrol (DES) in Caenorhabditis elegans hermaphrodites. Mutat Res 174:99–107Google Scholar
  41. Hansen EL, Buecher EJ (1971) Effects of insect hormones on nematodes in axenic culture. Experientia 27:859–860Google Scholar
  42. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Annu Rev 23:399–489Google Scholar
  43. Hieb WF, Rothstein M (1968) Sterol requirement for reproduction of a freeliving nematode. Science 160:778–780Google Scholar
  44. Hirschmann H (1952) Die Nematoden der Wassergrenze mittelfränkischer Gewässer. Zool Jahrb Syst 81:313–436Google Scholar
  45. Hood TE, Calabrese EJ, Zuckerman BM (2000) Detection of an estrogen receptor in two nematode species and inhibition of binding and development by environmental chemicals. Ecotoxicol Environ Saf 47:74–81Google Scholar
  46. Hoshi H, Kamata Y, Uemura T (2003) Effects of 17β-estradiol, bisphenol A and tributyltin chloride on germ cells of Caenorhabditis elegans. J Vet Med Sci 65:881–885Google Scholar
  47. Höss S, Severin GF, Jaser W, Schramm K-W (2001) Effects of 17α-ethinylestradiol and trenbolone on the growth and reproduction of Caenorhabditis elegans. Organohalogen Compounds 53:106–108Google Scholar
  48. Höss S, Jüttner I, Traunspurger W, Pfister G, Schramm K-W, Steinberg C (2002) 4-Nonylphenol can enhance the reproduction of Caenorhabditis elegans (Nematoda). Environ Pollut 120:169–172Google Scholar
  49. Höss S, Traunspurger W, Severin GF, Jüttner I, Pfister G, Schramm K-W (2004) Influence of 4-nonylphenol on the structure of nematode communities in freshwater microcosms. Environ Toxicol Chem 23:1268–1275Google Scholar
  50. Höss S, Traunspurger W, Zullini A (2006) Freshwater nematodes in environmental science. In: Abebe E, Traunspurger W, Andrassy I (eds) Freshwater nematodes—ecology and taxonomy. CABI Publishing, Cambridge, pp 144–162Google Scholar
  51. Jeong PY, Jung M, Yim YH, Kim H, Park M, Hong E, Lee W, Kim YH, Kim K, Paik Y-K (2005) Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433:541–545Google Scholar
  52. Johnson RN, Viglierchio DR (1970) Heterodera schachtii responses to exogenous hormones. Exp Parasitol 27:301–309Google Scholar
  53. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946Google Scholar
  54. Kiser CS, Parish EJ, Bone LW (1986) Binding of steroidal sex hormones by supernatant from Trichostrongylus colubriformis (Nematoda). Comp Biochem Physiol B 83:787–790Google Scholar
  55. Kohra S, Tominaga N, Mitsui Y, Takao Y, Ishibashi Y, Arizono K (1999) Determination of a screening system of endocrine disruptors by the induction of vitellogenin mRNA in C. elegans larvae. J Health Sci 45:37Google Scholar
  56. Kostrouch Z, Kostrouchova M, Rall JE (2005) Steroid/thyroid hormone receptor genes in Caenorhabditis elegans. Proc Natl Acad Sci USA 92:156–159Google Scholar
  57. Kostrouchova M, Krause M, Kostrouch Z, Rall JE (2001) Nuclear hormone receptor CHR3 is a critical regulator of all four larval molts of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 98:7360–7365Google Scholar
  58. Kurzchalia TV, Ward S (2003) Why do worms need cholesterol? Nat Cell Biol 5:684–688Google Scholar
  59. Lee DE (2002) The biology of nematodes. Tailor and Francis, London, UKGoogle Scholar
  60. Lee E-Y, Shim Y-H, Chitwood DJ, Hwang SB, Lee J, Paik Y-K (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem Biophys Res Commun 328:929–936Google Scholar
  61. Lee HM, Parish EJ, Bone LW (1989) The occurrence of estrone and estriol in Trichostrongylus colubriformis. Lipids 24:903–904Google Scholar
  62. Lee HM, Parish EJ, Bone LW (1990) Occurrence of mammalian sex steroids in the free-living nematode, Turbatrix aceti. Comp Biochem Physiol A 97:115–117Google Scholar
  63. Leppänen MT, Kukkonen J (1998) Relative importance of ingested sediment and pore water as bioaccumulation routes for pyrene to oligochaete (Lumbriculus variegatus, Müller). Environ Sci Technol 32:1503–1508Google Scholar
  64. Lozano R, Chitwood DJ, Lusby WR, Thompson MT, Svoboda MA, Patterson GW (1984) Comparative effects of growth inhibitors on sterol metabolism in the nematode Caenorhabditis elegans. Comp Biochem Physiol C 79:21–26Google Scholar
  65. Maglich JM, Sluder A, Guan X, McKee DD, Carrick K, Kamdar K, Willson TM, Moore JT (2001) Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol 2:0029.1–0029.7Google Scholar
  66. Majundar TK, Parish EJ, Bone LW (1987) Steroid analogs inhibit hormone binding by an extract from Nippostrongylus brasiliensis (Nematoda). Comp Biochem Physiol B 88:81–84Google Scholar
  67. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839Google Scholar
  68. Matyash V, Geier C, Henske A, Mukherjee S, Hirsh D, Thiele C, Grant B, Maxfield FE, Kurzchalia TV (2001) Distribution and transport of cholesterol in Caenorhabditis elegans. Mol Biol Cell 12:1725–1736Google Scholar
  69. Matyash V, Entchev EV, Mende F, Wisch-Bräuninger M, Thiehle C, Schmidt AW, Knölker HJ, Ward S, Kurzchalia TV (2004) Sterol-derived hormone(s) controls entry into diapause in Caenorhabditis elegans by consecutive activation of DAF-12 and DAF-16. PLoS Biol 2:1561–1571Google Scholar
  70. Meerovitch E (1965) Studies on the in vitro axenic development of Trichinella spriralis—II. Preliminary experiments on the effects on the effects of farnesol, cholesterol, and an insect extract. Can J Zool 43:81–85Google Scholar
  71. Michiels I, Traunspurger W (2005) Impact of resource availability on species composition and diversity in freshwater nematodes. Oecologia 142:98–103Google Scholar
  72. Motola DL, Cummins CL, Rottiers V, Sharma KK, Li TT, Li Y, Suiono-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ (2006) Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124:1209–1223Google Scholar
  73. Neher DA (2001) Role of nematodes in soil health and their use as indicators. J Nematol 33:161–168Google Scholar
  74. Novillo A, Won SJ, Li C, Callard IP (2005) Changes in nuclear receptor and vitellogenin gene expression in response to steroids and heavy metal in Caenorhabditis elegans. Integr Comp Biol 45:61–71Google Scholar
  75. Poinar GO (1975) Entomogenous nematodes. A manual and host list of insect–nematode associations. E.J. Brill, Leiden, The NetherlandsGoogle Scholar
  76. Reichert K, Menzel R (2005) Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genomic microarray. Chemosphere 61:229–237Google Scholar
  77. Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL (1996) Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science 274:1389–1391Google Scholar
  78. Riddle DL, Albert PS (1997) Genetic and environmental regulation of dauer larvae development. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 739–768Google Scholar
  79. Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds) (1997) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  80. Rogers WP (1978) The inhibitory action of insect juvenile hormone on the hatching of nematode eggs. Comp Biochem Physiol A 61:187–190Google Scholar
  81. Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, Mangelsdorf DJ, Antebi A (2006) Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev Cell 10:473–482CrossRefGoogle Scholar
  82. Schackwitz WS, Inoue T, Thomas JH (1996) Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron 17:719–728Google Scholar
  83. Schratzberger M, Wall CM, Reynolds WJ, Reed J, Waldock MJ (2002) Effects of paint-derived tributyltin on structure of estuarine nematode assemblages in experimental microcosms. J Exp Mar Biol Ecol 272:217–235Google Scholar
  84. Shanta CS, Meerovitch E (1970) Specific inhibition of morphogenesis in Trichinella spiralis by insect juvenile hormone mimics. Can J Zool 48:617–620Google Scholar
  85. Spindler K-D, Spindler-Barth M (2000) Nematoda. In: Dorn A (ed) Progress in developmental endocrinology [vol VIII in Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates]. Wiley, New York, pp 105–116Google Scholar
  86. Spindler K-D, Spindler-Barth M, Mehldorn H (1986) Effects of the juvenile hormone antagonist precocene II and the moulting hormone 20-OH-ecdysone on Litomosoides carinii and Dipetalonema viteae in vitro. Z Parasitenkd 72:837–841Google Scholar
  87. Svoboda JA, Thompson MJ, Robbins WE (1972) Azasteroids: potent inhibitors of insect molting and metamorphosis. Lipids 7:553–556Google Scholar
  88. Swanson JA, Falvo R, Bone LW (1984) Nippostrongylus brasiliensis: effects of testosterone on reproduction and establishment. J Parasitol 14:241–247Google Scholar
  89. Thong CHS, Webster JM (1971) The effect of gonadotrophins on the in vitro growth of the free-living nematode Cephalobus sp. Bastian. Can J Zool 49:1059–1061CrossRefGoogle Scholar
  90. Tominaga N, Tomoeda M, Kohra S, Takao Y, Nagae M, Ueda K, Ishibashi H, Kai T, Arizono K (2002) A convenient sublethal assay of alkylphenol and organotin compounds using the nematode Caenorhabditis elegans. J Health Sci 48:555–559Google Scholar
  91. Tominaga N, Kohra S, Iguchi T, Arizono K (2003a) A multi-generation sublethal assay of phenols using the nematode Caenorhabditis elegans. J Health Sci 49:459–463Google Scholar
  92. Tominaga N, Ura K, Kawakami M, Kawaquchi T, Kohra S, Mitsui Y, Iguchi T, Arizono K (2003b) Caenorhabditis elegans responses to specific steroid hormones. J Health Sci 49:28–33Google Scholar
  93. Traunspurger W (1997) Bathymetric, seasonal and vertical distribution of feeding types of nematodes in an oligotrophic lake. Vie et Milieu 47:1–7Google Scholar
  94. Traunspurger W (2002) Nematoda. In: Rundle SD, Robertson A, Schmid-Araya J (eds) Freshwater meiofauna: biology and ecology. Blackhuys Publishers, Leiden, The Netherlands, pp 63–104Google Scholar
  95. Traunspurger W, Bergtold M, Goedkoop W (1997) The effect of nematodes on bacterial activity and abundance in a freshwater sediment. Oecologia 112:118–122Google Scholar
  96. Ura K, Kai T, Sakata S, Iguchi T, Arizono K (2002) Aquatic acute toxicity testing using the nematode Caenorhabditis elegans. J Health Sci 48:583–586Google Scholar
  97. van den Brink PJ, ter Braak CJF (1999) Principal response curves: analysis of time dependent multivariate responses of biological community to stress. Environ Toxicol Chem 18:138–148Google Scholar
  98. Warbrick EV, Barker GC, Rees HH, Howells RE (1993) The effect of invertebrate hormones and potential hormone inhibitors on the third larval moult of the filarial nematode, Dirofilaria immitis, in vitro. Parasitology 107:459–463CrossRefGoogle Scholar
  99. Watanabe M, Mitani N, Ishii N, Miki K (2005) A mutation in a cuticle collagen causes hypersensitivity to the endocrine disrupting chemical, bisphenol A, in Caenorhabditis elegans. Mutat Res 570:71–80Google Scholar
  100. Weltje L, Höss S, van Doormalen J, Markert B, Oehlmann J (2003) Endocrine disruption in the nematode Caenorhabditis elegans. In: Abstracts of the 13th annual meeting of SETAC Europe, Hamburg, Germany, p 183Google Scholar
  101. Yeates GW (1981) Nematode populations in relation to soil environmental factors: a review. Pedobiologia 22:312–338Google Scholar
  102. Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331Google Scholar
  103. Yochem J, Tuck S, Greenwald I, Han M (1999) A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development 126:597–606Google Scholar
  104. Yu ZQ, Xiao BH, Huang WL, Peng P (2004) Sorption of steroid estrogens to soils and sediments. Environ Toxicol Chem 23:531–539Google Scholar
  105. Zullini A (1988) The ecology of the Lambro river. Riv Idrobiol 27:39–58Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.EcossaThierschstrasse 43MunichGermany
  2. 2.Department of Ecology and Evolution—EcotoxicologyJ.W. Goethe UniversityFrankfurt am MainGermany
  3. 3.Agricultural Center, EcotoxicologyLimburgerhofGermany

Personalised recommendations