, Volume 16, Issue 1, pp 169–182 | Cite as

Prosobranch snails as test organisms for the assessment of endocrine active chemicals––an overview and a guideline proposal for a reproduction test with the freshwater mudsnail Potamopyrgus antipodarum

  • Martina DuftEmail author
  • Claudia Schmitt
  • Jean Bachmann
  • Cornelius Brandelik
  • Ulrike Schulte-Oehlmann
  • Jörg Oehlmann


Recently, prosobranch snails have been recommended as promising candidates for test organisms for the assessment of endocrine active chemicals. Three prosobranch snail species, the freshwater mudsnail Potamopyrgus antipodarum, the freshwater ramshorn snail Marisa cornuarietis, and the marine netted whelk Nassarius reticulatus are portrayed and their respective biotests are presented together with results of laboratory experiments and biological effect monitoring surveys in the field. All characterized species are highly sensitive toward xeno-androgens [triphenyltin (TPT), tributyltin (TBT), methyltestosterone (MT) and fenarimol (FEN)], and xeno-estrogens [bisphenol A (BPA), octylphenol (OP), ethinylestradiol], and show effects at environmentally relevant, rather low concentrations in laboratory experiments. For exposure to the xeno-androgen TPT, EC10 values range between 15.9 and 29.0 ng as Sn/L (sediment 0.03 μg as Sn/kg), for TBT, EC10 values are found between 3.42 and 37.8 ng as Sn/L (sediment 2.98 μg as Sn/kg) and effect concentrations for FEN are calculated as 18.6 ng/L (EC10) and 0.19 μg/kg (EC50 sediment; EC10 not calculable). Exposure to xeno-estrogens yielded EC10 values of 13.9 ng/L (0.19 μg/kg) for BPA, a NOEC of <1 μg/L (EC10 of 0.004 μg/kg) for OP and a NOEC of 1 ng/l (EC10 sediment of 2.2 μg/kg) for ethinylestradiol. Responses to androgens comprised the development of imposex and the reduction of fertility or embryo production, effects of estrogens included the stimulation of egg production and embryo production, and the increased weight of glands. Also, biological effect monitoring studies with P. antipodarum and N. reticulatus in several rivers or estuarine areas revealed the capacity of the biotests to detect an androgenic or estrogenic potential of sediment samples. A comparison of the three test species with regard to sensitivity and practical aspects in routine application favors the freshwater mudsnail P. antipodarum for a standardized procedure, and this reproduction test will be introduced into the OECD guideline program for standardization in the near future.


Biotest Endocrine disruptors Prosobranch snails Potamopyrgus antipodarum Marisa cornuarietis Nassarius reticulatus Standard test 



The authors are grateful to Dr. Michaela Tillmann (University of Dresden), Marika Goth, Conny Stark, Ulrike Schneider (International Graduate School Zittau), and Marc Hasenbank, Gabriele Elter, and Simone Ziebart (University of Frankfurt). Parts of the research were funded by the German Federal Environmental Agency (R&D projects 102 40 303/01, 297 65 001/04 and 299 24 275) and the European Union (contract MCFH-1999-01043 and EU-project COMPRENDO, project code: EVK1-CT-2002-00129).


  1. Andersen HR, Halling-Sorensen B, Kusk KO (1999) A parameter for detecting estrogenic exposure in the copepod Acartia tonsa. Ecotoxicol Environ Safe 44:56–61CrossRefGoogle Scholar
  2. Barroso CM, Moreira MH, Gibbs PE (2000) Comparison of imposex and intersex development in four prosobranch species for TBT monitoring of a southern European estuarine system (Ria de Aveiro, NW Portugal). Mar Ecol Prog Ser 201:221–232Google Scholar
  3. Casey D (2000) A biotest method for identification of estrogenically active compounds on selected invertebrates. MSc Thesis, Coventry University, UKGoogle Scholar
  4. Cope NJ, Winterbourn MJ (2004) Competitive interactions between two successful molluscan invaders of freshwater: an experimental study. Aquat Ecol 38:83–91CrossRefGoogle Scholar
  5. deFur PL, Crane M, Ingersoll C, Tattersfield L (eds) (1999) Endocrine disruption in invertebrates: endocrinology, testing, and assessment. SETAC, Pensacola, FL, USAGoogle Scholar
  6. Duft M (2004) Ecotoxicological sediment assessment of large rivers using nematodes and gastropods—from bioassay to the field. Cuvillier, Göttingen, Germany. PhD thesis, J.W. Goethe University Frankfurt, GermanyGoogle Scholar
  7. Duft M, Schulte-Oehlmann U, Tillmann M, Markert B, Oehlmann J (2003a). Toxicity of triphenyltin and tributyltin to the freshwater mudsnail Potamopyrgus antipodarum in a new sediment biotest. Environ Toxicol Chem 22:145–152CrossRefGoogle Scholar
  8. Duft M, Schulte-Oehlmann U, Weltje L, Tillmann M, Oehlmann J (2003b) Stimulated embryo production as a parameter of estrogenic exposure via sediments in the freshwater mudsnail Potamopyrgus antipodarum. Aquat Toxicol 64:437–449CrossRefGoogle Scholar
  9. Duft M, Schulte-Oehlmann U, Tillmann M, Weltje L, Oehlmann J (2005) Biological impact of organotin compounds on mollusks in marine and freshwater ecosystems. Coast Mar Sci 29:95–110Google Scholar
  10. Federoff NE, Young D, Cowles J (1999) TPTH. Reregistration Eligibility Decision (RED) chapter: environmental fate and ecological risk assessment. EPA 738R99009. US Environmental Protection Agency, Washington DC, USAGoogle Scholar
  11. Fretter V, Graham A (1994) British prosobranch molluscs. Their functional anatomy and ecology. Ray Society, LondonGoogle Scholar
  12. Gist GL (1998) National Environmental Health Association position on endocrine disrupters—adopted July 2, 1997. J Environ Health 60:21–23Google Scholar
  13. Hauser L, Carvalho GR, Hughes RN, Carter RE (1992) Clonal structure of the introduced freshwater snail Potamopyrgus antipodarum (Prosobranchia: Hydrobiidae), as revealed by DNA fingerprinting. Proc Biol Sci 249:19–25CrossRefGoogle Scholar
  14. Hunt BP (1958) Introduction of Marisa into Florida. Nautilus 72:53–55Google Scholar
  15. Jacobsen R, Forbes VE (1997) Clonal variation in life-history traits and feeding rates in the gastropod, Potamopyrgus antipodarum: performance across a salinity gradient. Funct Ecol 11:260–267CrossRefGoogle Scholar
  16. Janer G, Porte C (2006) Sex steroids and potential mechanisms of non-genomic endocrine disruption in invertebrates. Ecotoxicology. DOI 10.1007/s10646-006-0110-4Google Scholar
  17. Jobin WR, Laracuente A. (1979) Biological control of schistosome transmission in flowing water habitats. Am J Trop Med Hyg 28:916–917Google Scholar
  18. Jobling S, Casey D, Rogers-Gray T, Oehlmann J, Schulte-Oehlmann U, Pawlowski S,Braunbeck T, Turner AP, Tyler CR (2004) Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent. Aquat Toxicol 65:205–220CrossRefGoogle Scholar
  19. Kinzelbach R (1995) Neozoans in European waters—exemplifying the worldwide process of invasion and species mixing. Experientia 51:526–538CrossRefGoogle Scholar
  20. Kuckuck P (1953) Der Strandwanderer. 6th edn. Lehmanns, München, GermanyGoogle Scholar
  21. Kühn R, Pattard M (1989) Results of the harmful effects of water pollutants to Daphnia magna in the 21 days reproduction test. Water Res 23:501–510CrossRefGoogle Scholar
  22. Kusk KO, Petersen S (1997) Acute and chronic toxicity of tributyltin and linear alkylbenzene sulfonate to the marine copepod Acartia tonsa. Environ Toxicol Chem 16:1629–1633CrossRefGoogle Scholar
  23. Lafont R, Mathieu M (2006) Steroids in aquatic invertebrates. Ecotoxicology. DOI 10.1007/s10646-006-0113-1 Google Scholar
  24. Matthiessen P, Gibbs PE (1998) Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in molluscs. Environ Toxicol Chem 17:37–43CrossRefGoogle Scholar
  25. Oehlmann J (2000) Ecotoxicological evaluation of triphenyltin compounds. Report UBA project 363 01 021. German Federal Environmental Agency, Berlin GermanyGoogle Scholar
  26. Oehlmann J, Stroben E, Fioroni P (1991) The morphological expression of imposex in Nucella lapillus (Linnaeus) (Gastropoda: Muricidae). J Moll Stud 57:375–390CrossRefGoogle Scholar
  27. Oehlmann J, Schulte-Oehlmann U, Tillmann M, Markert B (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory Part I Bisphenol A and octylphenol as xeno-estrogens. Ecotoxicology 9:383–397CrossRefGoogle Scholar
  28. Oehlmann J, Schulte-Oehlmann U, Bachmann J, Oetken M, Lutz I, Kloas W, Ternes TA (2005) Bisphenol A induces superfeminization in the ramshorn snail Marisa cornuarietis (Gastropoda: Prosobranchia) at environmentally-relevant concentrations. Environ Health Perspect 114 (Suppl. 1):127–133CrossRefGoogle Scholar
  29. Ponder WF (1988) Potamopyrgus antipodarum—a molluscan colonizer of Europe and Australia. J Moll Stud 54:271–285CrossRefGoogle Scholar
  30. Schmitt C, Duft M, Brandelik C, Schulte-Oehlmann U, Oehlmann J (2006) SOP for testing of chemicals: reproduction test with the prosobranch snail Potamopyrgus antipodarum for testing endocrine active chemicals. Part I: Culturing of Potamopyrgus antipodarum. Part II: reproduction test using water exposure. Part III: reproduction test using spiked sediment. Department of Ecology and Evolution–Ecotoxicology, J.W. Goethe University of Frankfurt, GermanyGoogle Scholar
  31. Scholz C (2003) Effekte von hormonell wirksamen Pestiziden Fenarimol und Vinclozolin auf Spitzschlammschnecken (Lymnaea stagnalis) und Zwergdeckelschnecken (Potamopyrgus antipodarum). BSc thesis, University of Applied Sciences Zittau-Görlitz, GermanyGoogle Scholar
  32. Schulte-Oehlmann U (1997) Fortpflanzungsstörungen bei Süß- und Brackwasserschnecken—Einfluß der Umweltchemikalie Tributylzinn. Wissenschaft und Technik Verlag, Berlin, GermanyGoogle Scholar
  33. Schulte-Oehlmann U, Bettin C, Fioroni P, Oehlmann J, Stroben E (1995) Marisa cornuarietis (Gastropoda, Prosobranchia): a potential TBT bioindicator for freshwater environments. Ecotoxicology 4:372–384CrossRefGoogle Scholar
  34. Schulte-Oehlmann U, Tillmann M, Markert B, Oehlmann J (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca: Gastropoda) in the laboratory. Part II Triphenyltin as a xeno-androgen. Ecotoxicology 9:399–412CrossRefGoogle Scholar
  35. Schulte-Oehlmann U, Duft M, Tillmann M, Markert B, Oehlmann J (2001a) Biologisches Effektmonitoring an Sedimenten der Elbe mit Potamopyrgus antipodarum und Hinia (Nassarius) reticulata (Gastropoda: Prosobranchia). Final report, ARGE Elbe, Hamburg, GermanyGoogle Scholar
  36. Schulte-Oehlmann U, Markert B, Oehlmann J (2001b) Entwicklung eines biologischen Tests mit Marisa cornuarietis (Gastropoda: Prosobranchia) zur Erfassung von Umweltchemikalien mit geschlechtshormonähnlicher Wirkung. Final report for the German Federal Environmental Agency, Berlin, Germany. Project code 297 65001/04Google Scholar
  37. Stroben E (1994) Imposex und weitere Effekte von chronischer TBT-Intoxikation bei einigen Mesogastropoden und Bucciniden (Gastropoda: Prosobranchia). Cuvillier, Göttingen, Germany. PhD thesis, University of Münster, GermanyGoogle Scholar
  38. Stroben E, Oehlmann J, Fioroni P (1992) The morphological expression of imposex in Hinia reticulata (Gastropoda: Buccinidae): a potential bioindicator of tributyltin pollution. Mar Biol 113:625–636CrossRefGoogle Scholar
  39. Swan SH, Elkin EP, Fenster L (2000) The question of declining sperm density revisited: an analysis of 101 studies published 1934–1996. Environ Health Perspect 108:961–966Google Scholar
  40. Tallmark B (1980) Population dynamics of Nassarius reticulatus (Gastropoda, Prosobranchia) in Gullmar Fjord, Sweden. Mar Ecol Prog Ser 3:51–62Google Scholar
  41. Tillmann M (2004) Sediment toxicological investigations using gastropods and insects, with special emphasis on endocrine active substances. Cuvillier, Göttingen, Germany. PhD thesis, J.W. Goethe University Frankfurt, GermanyGoogle Scholar
  42. Wallace C (1979) Notes on the occurrence of males in populations of Potamopyrgus jenkinsi. J Moll Stud 45:383–392Google Scholar
  43. Weltje L, Verhoof LRCW, Verweij W, Hamers T (2004) Lutetium speciation and toxicity in a microbial bioassay: Testing the free-ion model for lanthanides. Environ Sci Technol 38:6597–6604CrossRefGoogle Scholar
  44. Zou E, Fingerman M (1999) Effects of estrogenic agents on chitobiase activity in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Ecotoxicol Environ Safe 42:185–190CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Martina Duft
    • 1
    Email author
  • Claudia Schmitt
    • 1
  • Jean Bachmann
    • 1
    • 2
  • Cornelius Brandelik
    • 1
  • Ulrike Schulte-Oehlmann
    • 1
  • Jörg Oehlmann
    • 1
  1. 1.Department of Ecology and Evolution––EcotoxicologyJ. W. Goethe University FrankfurtFrankfurt am MainGermany
  2. 2.German Federal Environmental Agency (Umweltbundesamt)DessauGermany

Personalised recommendations