Advertisement

Ecotoxicology

, Volume 15, Issue 7, pp 593–599 | Cite as

Toxicological characterisation of the aqueous soluble phase of the Prestige fuel-oil using the sea-urchin embryo bioassay

  • Nuria Fernández
  • Augusto Cesar
  • Maria José Salamanca
  • Tomás Ángel DelValls
Article

Abstract

The soluble components of fuel oil are generally assumed to be the fraction that is toxic for organisms living in the water column. We have used a liquid phase bioassay with embryos of sea urchin to assess the toxicity of the water-soluble fraction (elutriate) of the fuel oil spilled when the tanker Prestige sank on 13 November 2002. Two methodologies to obtain elutriates were carried out in order to compare the effect of the extraction method on the measured toxicity. Analyses of Σ16PAHs (naphthalene, acenaphtylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, Indeno(1,2,3-c-d)pyrene, benzo(a)pyrene, dibenz(a,h)anthracene and benzo(ghi)perylene) and four metals (copper, cadmium, lead and zinc) were conducted and linked to the biological response. The effective concentration that provoked a delay in the successful embryogenesis of 50% of population (EC50) was 2.3% of fuel oil. No differences in final toxicity between the two elutriation treatments were found, although the rotated extraction seemed to be more effective than magnetic stirring in transferring contaminants from the fuel oil to the water. Toxicity was mainly associated with the low-weight PAHs (2–4 benzene rings).

Keywords

PAHs Metals Elutriation Paracentrotus lividus Larvae 

Notes

Acknowledgements

The authors express their thanks to CIS, S.L. (Santiago de Compostela-Spain) for help in the field sampling and chemical analyses. The fuel oil was provided by OTVM (Universidade de Vigo). This work was funded by the Spanish “Ministerio de Educación y Ciencia” through grant VEM2003-20563/INTER.

References

  1. Anderson JW, Neff JM, Cox BA, Tatum HE, Hightower GH (1974) Characteristics of dispersions and water soluble extracts of crude and refined oil and their toxicity to estuarine crustaceans and fish. Mar Biol 27:75–88CrossRefGoogle Scholar
  2. Barron MG, Podrabsky T, Ogle S, Ricker RW (1999) Are aromatic hydrocarbons the primary determinant of petroleum toxicity to aquatic organisms? Aquat Toxicol 46:253–268CrossRefGoogle Scholar
  3. Beiras R (2002) Comparison of methods to obtain a liquid phase in marine sediment toxicity bioassays with Paracentrotus lividus sea urchin embryos. Arch Environ Contam Toxicol 42:23–28CrossRefGoogle Scholar
  4. Beiras R, Fernández N, Bellas J, Besada V, González-Quijano A, Nunes T (2003) Integrative assessment of marine pollution in galician estuaries using sediment chemistry, mussell bioaccumulation and embryo-larval toxicity bioassays. Chemosphere 52:1209–1222CrossRefGoogle Scholar
  5. Beiras R, Bellas J, Saco-Álvarez L, Mariño-Balsa JC, Pérez M, Fernández N (2005) (Personal communication). Acute toxicity of individual polycyclic aromatic hydrocarbons (PAH), and Prestige-fuel water accommodated fractions (WAF) to early life stages of commercial marine organisms, zooplankton and phytoplankton. In: Proceedings of the symposium for monitoring of accidental oil spills projects in marine environment. Vigo (Pontevedra), Spain, 13–16 July 2005Google Scholar
  6. Bellas J, Beiras R, Mariño JC, Fernández N (2005) Toxicity of organic compounds to marine invertebrates embryos and larvae: a comparison between sea urchin embryogenesis bioassay and alternative test species. Ecotoxicology 14:337–353CrossRefGoogle Scholar
  7. Cajaraville MP, Marigomez JA, Angulo E (1992) Comparative effects of the water accomodated fraction of three oils on mussels. 1. Survival, growth and gonad development. Comp Biochem Physiol C 102(1):103–112CrossRefGoogle Scholar
  8. Campana O, Rodríguez A, Blasco J (2005) Bioavailability of heavy metals in the Guadalete River Estuary (SW Iberian Peninsula). Cienc Mar 31(1B):135–147Google Scholar
  9. Carballeira A (2003) Consideraciones para el diseño de un programa de monitorización de los efectos biológicos del vertido del Pretige. Cienc Mar 29(1):123–139Google Scholar
  10. CEDRE (Centre de Documentation, de Recherche et d’Expérimentations sur les Pollutions Accidentelles des Eaux). Connaissance du produit. Analices et étude du comportement du fuel du Pretige. Technical report. http://www.lecedre.fr/fr/prestige/z_produit.htmGoogle Scholar
  11. Couillard CM, Lee K, Légaré B, Kinf TL (2005) Effect of dispersant on the composition of water accommodated fraction of crude oil and its toxicity to larval marine fish. Environ Toxicol Chem 24(6):1496–1504CrossRefGoogle Scholar
  12. CSIC (Consejo Superior de Investigaciones Científicas) (2003a) Caracterización del vertido y evolución preliminar en el medio. Tech Rep 01, pp. 1–6Google Scholar
  13. CSIC (Consejo Superior de Investigaciones Científicas) (2003b) Presencia de metales pesados en la zona de hundimiento del petrolero Prestige y composición de metales y complejantes del fuel emulsionado en la costa. Tech rep 02:1–2Google Scholar
  14. Fernández N, Beiras R (2001) Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 10:263–271CrossRefGoogle Scholar
  15. Fernández N (2002) Evaluación biológica de la calidad de sedimentos marinos costeros mediante bioensayos com embriones del erizo de mar Paracentrotus lividus. Universidade de Vigo, Vigo, Spain, p 211Google Scholar
  16. Fernández N, Cesar A, González M, DelValls TA (2006) Nivel de contaminación de sedimentos afectados por el vertido del Prestige y sus efectos sobre el desarrollo embrionario del erizo de mar. Cienc Mar 32(2B): 421–427Google Scholar
  17. Futoma DJ, Smith SR, Smith TE, Tanaka J (1981) Polycyclic aromatic hydrocarbons in water systems. CRC Press, Boca RatonGoogle Scholar
  18. Geffard O, Budkinski H, LeMenach K (2004) Chemical and ecotoxicological characterization of the “Erika” petroleum: bio-tests applied to petroleum water-accommodated fractions and natural contaminated samples. Aquat Living Resour 17:289–296CrossRefGoogle Scholar
  19. IFREMER. Analyses du fioul Prestige. Technical report. http://www.ifremer.fr/envlit/prestige/prestigefioulana_sp.htm)Google Scholar
  20. Keith LH, Telliard WA (1979) Priority pollutants. I-A perspective view. Environ Sci Technol 13:416–423CrossRefGoogle Scholar
  21. Kennish M (1997) Practical handbook of estuarine and marine pollution. CRC Press, Boca Raton, LondonGoogle Scholar
  22. Kobayashi N (1981) Comparative toxicity of various chemicals, oil extracts and oil dispersant extracts to Canadian and Japanese sea urchin eggs. Publ Seton Mar Biol Lab XXVI(1/3):123–133Google Scholar
  23. Kobayashi N (1991) Marine pollution bioassay by using sea urchin eggs in Tabane Bay, Wakayama Prefecture, Japan, 1970–1987. Mar Poll Bull 23:709–713CrossRefGoogle Scholar
  24. Kobayashi N (1995) Bioassay data for marine pollution using echinoderms. In: Cheremisinoff PN (eds) Encyclopaedia of environmental control technology. Gulf. Publ. Co., HoustonGoogle Scholar
  25. Mariño-Balsa JC, Pérez P, Estévez-Blanco P, Saco-Álvarez L, Fernández E, Beiras R (2003) Evaluación de la toxicidad de sedimento y agua de mar contaminados por el vertido de fuel del Prestige, mediante el uso de bioensayos con las almejas Venerupis pullastra, Tappes decussatus y Venerupis rhomboideus y la microalga Skeletonema costatum. Cien Mar 29(1):115–122Google Scholar
  26. May WE, Wasik SP, Freeman DH (1978) Determination of the solubility behaviour of some polycyclic aromatic hydrocarbons in water. Anal Chem 50(7):997–1000CrossRefGoogle Scholar
  27. OSPAR (2002). OSPAR guidelines for toxicity testing of substances and preparations used and discharged offshore. Annex 7. Ref. 2002–3. Meeting of the Offshore Industry Committee (OIC). Cadiz: 11–15 February 2002, pp. 4Google Scholar
  28. Pelletier MC, Burgess RM, Ho KT, Kuhn A, Mckinney RA, Rybe SA (1997) Phototoxicity of individual polycyclic aromatic hydrocarbons and petroleum to marine invertebrate larvae and juveniles. Environ Toxicol Chem 16:2190–2199CrossRefGoogle Scholar
  29. Pérez MI (2004) Estudio de los niveles de contaminación por hidrocarburos aromáticos policíclicos en la Ría de Pontevedra y evaluación de su toxicidad sobre la embriogénesis del erizo de mar Paracentrotus lividus. Universidade de Vigo, Vigo, SpainGoogle Scholar
  30. US Environmental protection (1986) Method 8100. SW-846 Ch 4.2.1. Polynuclear Aromatic HydrocarbonsGoogle Scholar
  31. US Environmental protection (1996a) Method 3500B. SW-846 Ch 4.2.1. Organic extracting and sample preparationGoogle Scholar
  32. US Environmental protection (1996b) Method 3910B. SW-846 Ch 4.2.1. Alumina CleanupGoogle Scholar
  33. Vanegas C, Espina S, Botello AV, Villanueva S (1997) Acute toxicity and synergism of cadmium and zinc in white shrimp, Penaeus setiferus, juveniles. Bull Environ Contam Toxicol 58:87–92CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Nuria Fernández
    • 1
  • Augusto Cesar
    • 2
  • Maria José Salamanca
    • 1
  • Tomás Ángel DelValls
    • 1
  1. 1.Cátedra UNESCO/UNITWIN-Wicop, Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizPuerto Real (Cádiz)Spain
  2. 2.Laboratório de EcotoxicologiaRua Osvaldo CruzSantosBrasil

Personalised recommendations