, Volume 15, Issue 7, pp 583–591 | Cite as

Application of in-situ bioassays with macrophytes in aquatic mesocosm studies

  • Anja CoorsEmail author
  • Jochen Kuckelkorn
  • Monika Hammers-Wirtz
  • Tido Strauss


Aquatic mesocosm studies assess ecotoxicological effects of chemicals by using small artificial ponds as models of lentic ecosystems. In this study, methods of controlled insertion of macrophytes within an outdoor mesocosm study were explored. Although analytically confirmed concentrations of the model herbicide terbuthylazine were high enough to expect direct effects on phytoplankton, functional parameters and dominant taxa abundance indicated only minor and transient effects. In-situ assays with Lemna minor, Myriophyllum spicatum, Potamogeton lucens and Chara globularis revealed adverse effects at concentrations in accordance with literature data. Complex interactions such as nutrient limitation and competition were possible reasons for the observed growth promotion at the lower concentration of about 5 μg/l terbuthylazine. The approach of macrophyte in-situ bioassays within a mesocosm study proved to be applicable. Presumed advantages are simultaneous acquisition of toxicity data for several species of aquatic plants under more realistic conditions compared to laboratory tests and inclusion of macrophytes as important structural and functional components in mesocosms while limiting their domination of the model ecosystem.


Herbicide Macrophyte Terbuthylazine Functional redundancy Mesocosm 



We thank Dick Belgers, Alterra, Wageningen, NL, for supply of Chara globularis and Thomas La Point for comments and editorial help with an earlier version of the manuscript.


  1. Bossi R, Vejrup KV, Mogensen BB, Asman WAH (2002) Analysis of polar pesticides in rainwater in Denmark by liquid chromatography–tandem mass spectrometry. J Chromatogr A 957:27–36CrossRefGoogle Scholar
  2. Campbell PJ, Arnold D, Brock T, Grandy N, Heger W, Heimbach F, Maund SJ, Streloke M (1999) Guidance document on higher-tier aquatic risk assessment for pesticides (HARAP). Society of Environmental Toxicology and Chemistry (SETAC), Brussels, BelgiumGoogle Scholar
  3. Cedergreen N, Spliid NH, Streibig JC (2004) Species-specific sensitivity of aquatic macrophytes towards two herbicides. Ecotox Environ Safe 58:314–323CrossRefGoogle Scholar
  4. Correll DL, Wu TL (1982) Atrazine toxicity to submersed vascular plants in simulated estuarine microcosms. Aquat Bot 14:151–158CrossRefGoogle Scholar
  5. Coyner A, Gupta G, Jones T (2001) Effect of chlorsulfuron on growth of submerged aquatic macrophyte Potamogeton pectinatus (sago pondweed). Environ Pollut 111:453–455CrossRefGoogle Scholar
  6. Cuppen JGM, Van den Brink PJ, Van der Woude H, Zwaardemaker N, Brock TCM (1997) Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide linuron. Ecotox Environ Safe 38:25–35CrossRefGoogle Scholar
  7. De Almeida Azevedo D, Lacorte S, Vinhas T, Viana P, Barcelo D (2000) Monitoring of priority pesticides and other organic pollutants in river water from Portugal by gas chromatography–mass spectrometry and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 879:13–26CrossRefGoogle Scholar
  8. Detenbeck NE, Hermanutz R, Allen K, Swift MC (1996) Fate and effects of the herbicide atrazine in flow-through wetland mesocosms. Environ Toxicol Chem 15:937–946CrossRefGoogle Scholar
  9. EPA (1995) Reregistration eligibility decision terbuthylazine. EPA 738-R-95-005. United States Environmental Protection Agency, WashingtonGoogle Scholar
  10. EPA (2000) Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)). Office of Pesticide Programs, Environmental Fate and Effects Division, United States Environmental Protection Agency, Washington, DCGoogle Scholar
  11. EU (2004) European Union Commission decision of 10 March 2004 concerning the non-inclusion of atrazine in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing this active substance (notified under document number C(2004) 731), 2004/248/ECGoogle Scholar
  12. Fairchild JF, Ruessler DS, Carlson AR (1998) Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlot, and metolachlor. Environ Toxicol Chem 17:1830–1834CrossRefGoogle Scholar
  13. Fairchild JF, Ruessler DS, Haverland PS, Carlson AR (1997) Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Arch Environ Contam Toxicol 32:353–357CrossRefGoogle Scholar
  14. Giddings JM, Brock TCM, Heger W, Heimbach F, Maund SJ, Norman SM, Ratte HT, Schäfers C, Streloke M (2002) Community-level aquatic system studies – Interpretation criteria. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, FL, USAGoogle Scholar
  15. Hanson ML, Sanderson H, Solomon KR (2003) Variation, replication, and power analysis of Myriophyllum spp. microcosm toxicity data. Environ Toxicol Chem 22:1318–1329CrossRefGoogle Scholar
  16. Hartgers EM, Aalderink GH, van den Brink PJ, Gylstra R, Wiegman JWF, Brock TCM (1998) Ecotoxicological threshold levels of a mixture of herbicides (atrazine, diuron and metolachlor) in freshwater microcosms. Aquat Ecol 32:135–152CrossRefGoogle Scholar
  17. Hawxby K, Tubea B, Ownby J, Basler E (1977) Effects of various classes of herbicides on four species of algae. Pestic Biochem Physiol 7:203–209CrossRefGoogle Scholar
  18. Hernandez F, Hidalgo C, Sancho JV, Lopez FJ (1998) Coupled-column liquid chromatography applied to the trace-level determination of triazine herbicides and some of their metabolites in water samples. Anal Chem 70:3322–3328CrossRefGoogle Scholar
  19. Hill IR, Heimbach F, Leeuwangh P, Matthiessen P (1994) Freshwater field tests for hazard assessment of chemicals. Lewis Publishers, Boca Raton, FLGoogle Scholar
  20. Hüskes R, Levsen K (1997) Pesticides in rain. Chemosphere 35:3013–3024CrossRefGoogle Scholar
  21. Honnen W, Rath K, Schlegel T, Schwinger A, Frahne D (2001) Chemical analyses of water, sediment and biota in two small streams in southwest Germany. J Aquat Ecosyst Stress 8:195–213CrossRefGoogle Scholar
  22. ISO (1997) DIN EN ISO 11369. Wasserbeschaffenheit – Bestimmung ausgewählter Pflanzenbehandlungsmittel – Verfahren mit der Hochauflösungs-Flüssigkeitschromatographie mit UV-Detektion nach Fest-Flüssig-Extraktion. International Organization for StandardizationGoogle Scholar
  23. ISO (2003) ISO guideline 20079. Water quality. Determination of toxic effect of water constituents and waste water to duckweed (Lemna minor). Duckweed growth inhibition test. 03/315968 DC. International Organization for StandardizationGoogle Scholar
  24. Kemp WM, Boynton WR, Cunningham JJ, Stevenson JC, Jones TW, Means JC (1985) Effects of atrazine and linuron on photosynthesis and growth of the macrophytes, Potamogeton perfoliatus L. and Myriophyllum spicatum L. in an estuarine environment. Mar Environ Res 16:255–280CrossRefGoogle Scholar
  25. Landolt E, Kandeler R (1987) Biosystematic investigations in the family of duckweeds (4): the family of Lemnaceae – a monographic study (2), Veröffentlichung des Geobotanischen Instituts der ETH, Zürich, 95. HeftGoogle Scholar
  26. Netherland MD, Getsinger KD, Skogerboe JD (1997) Mesocosm evaluation of the species-selective potential of fluridone. J Aquat Plant Manage 35:41–50Google Scholar
  27. Nitschke L, Wilk A, Schüssler W, Metzner G, Lind G (1999) Biodegradation in laboratory activated sludge plants and aquatic toxicity of herbicides. Chemosphere 39:2313–2323CrossRefGoogle Scholar
  28. OECD (2000) Guidance for testing of chemicals – Freshwater Lentic Field Tests (Outdoor Microcosms and Mesocosms). Revised draft document. Organisation for Economic Co-operation and Development, Paris, FranceGoogle Scholar
  29. PAN (2005) Pesticide Action Network North America. May 2005Google Scholar
  30. Romo S, Miracle MR, Villena MJ, Rueda J, Ferriol C, Vicente E (2004) Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biol 49:1593–1607CrossRefGoogle Scholar
  31. Scheffer M (1998) Ecology of shallow lakes. Chapman & Hall, LondonGoogle Scholar
  32. Schriver P, Bogestrand J, Jeppesen E, Sondergaard M (1995) Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshwater Biol 33:255–270CrossRefGoogle Scholar
  33. Shabana EF, Abou-Waly H (1995) Growth and some physiological aspects of Nostoc muscorum in response to mixtures of two triazine herbicides. Bull Environ Contam Toxicol 54:273–280CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Anja Coors
    • 1
    • 2
    Email author
  • Jochen Kuckelkorn
    • 1
  • Monika Hammers-Wirtz
    • 1
  • Tido Strauss
    • 1
  1. 1.Research Institute for Ecosystem Analysis and Assessment (gaiac), c/o Institute of Environmental ResearchRWTH Aachen UniversityAachenGermany
  2. 2.Laboratory of Aquatic EcologyCatholic University LeuvenLeuvenBelgium

Personalised recommendations